

REFERENCES:

Etude des consommations de carburant en viticulture

Groupe régional

Avec le soutien financier de :

Contexte de l'énergie en Viticulture, en Bourgogne

Surface en Vignes en Bourgogne :

1,2% de la SAU régionale

Consommation énergétique du secteur viticole en Bourgogne :

11%

de la consommation énergétique régionale du secteur agricole

*17 529 Tonnes équivalent Pétrole (toutes formes d'énergies comprises : électricité, Gaz naturel, GNR, essence,...)

Source : Données Agreste

Etude des consommations de carburant en viticulture

• Etude

- Mieux **connaître les consommations** et établir les pistes et leviers efficaces pour économiser du carburant
- conduite sur **plusieurs années**
- concernant tous les viticulteurs de Bourgogne

• Des enquêtes

• L'utilisation d'un enregistreur de consommation

Etude des consommations de carburant en viticulture

• A l'échelle de l'exploitation :

	Observatoire des Charges de MECAnisation		
	en Viticulture (Edition 2011)		
	Base de données		
Effectif	71		
Moyenne	265		
Ecart-type	110		
Médiane	250		
Q1	170		
Q3	357		
Min	84		
Max	600		

Données en litres/ha

Indicateurs mesurés

Débit de Chantier =
$$\frac{\text{Surface réalisée}}{\text{temps de chantier}}$$

Consommation Horaire =
$$\frac{\text{carburant consommé}}{\text{temps de chantier}}$$

Consommation hectare =
$$\frac{\text{carburant consommé}}{\text{surface travaillée}}$$

Taux de charge Moteur =
$$\frac{\text{Consommation réelle}}{\text{Consommation théorique à puissance } max}$$

Des consommations très variables selon les opérations

A l'échelle du chantier : Les déplacements

Le déplaceme	<u>nt</u> Tracteur Enjan	Tracteur Enjambeur 115ch		
,	Vitesse de déplacement	Consommation de	carburant	
	14,6 km/heure	11,7 litres /heure	80,2 litres /100km	
	18,9 km/heure	12,8 litres/heure	67,8 litres /100km	
	26,0 km/heure	15,6 litres/heure	60,1 litres /100km	
En moyenne	19,8 km/heure	13,4 litres /heure	67,8 litres /100km	

source : enregisteur de consommation / effectif de l'échantillon : 3 chantiers

Pour un tracteur de 115ch, la consommation moyenne sur route s'élève :

à 13.4 l/heure soit près de 70 litres/100km

A l'échelle du chantier : Le Travail du Sol

Le travail du sol			
	débit de chantier consommation de car		n de carburant
Travail Inter-rangs	1,2 ha/heure	5,3 litres /heures	6,9 litres /ha
Travail Inter-Ceps	0,2 ha/heure	7,2 litres /heures	33,5 litres /ha

source : enquêtes chantiers travail du sol / effectif de l'échantillon : 10 chantiers

De grandes différences entre travail : Inter-rangs ≠ Inter-Ceps

• A l'échelle du chantier : la fertilisation et les traitements

La fertilisation

débit de chantier

consommation de carburant

En moyenne

1,1 ha /heure

11,9 litres /h

11,0 litres /ha

source : enregisteur de consommation / effectif de l'échantillon : 3 chantiers

La pulvérisation / le désherbage

débit de chantier

consommation de carburant

En moyenne

1.4 ha/heure

8,0 litres /h

5,7 litres /ha

source : enregisteur de consommation / effectif de l'échantillon : 4 chantiers

La pulvérisation / Les traitements

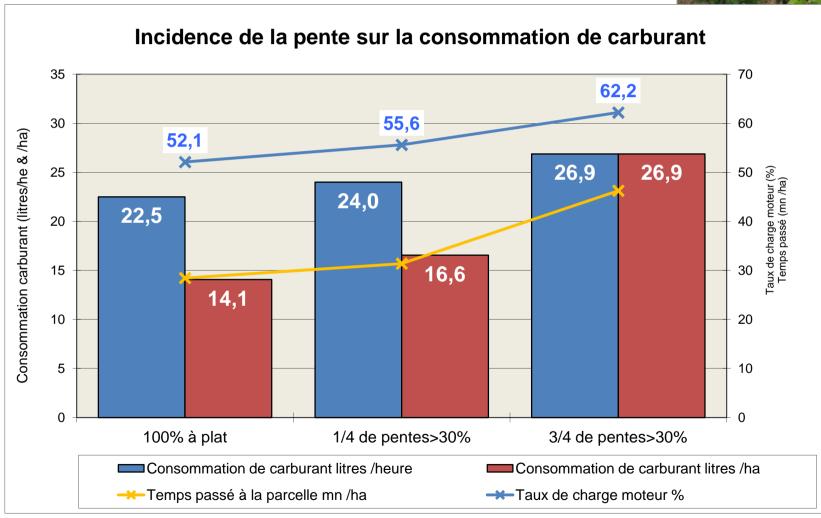
débit de chantier

consommation de carburant

En moyenne

1,6 ha/heure

12,8 litres /h


8,3 litres /ha

source : enquêtes chantiers de pulvérisation / effectif de l'échantillon : 34 chantiers

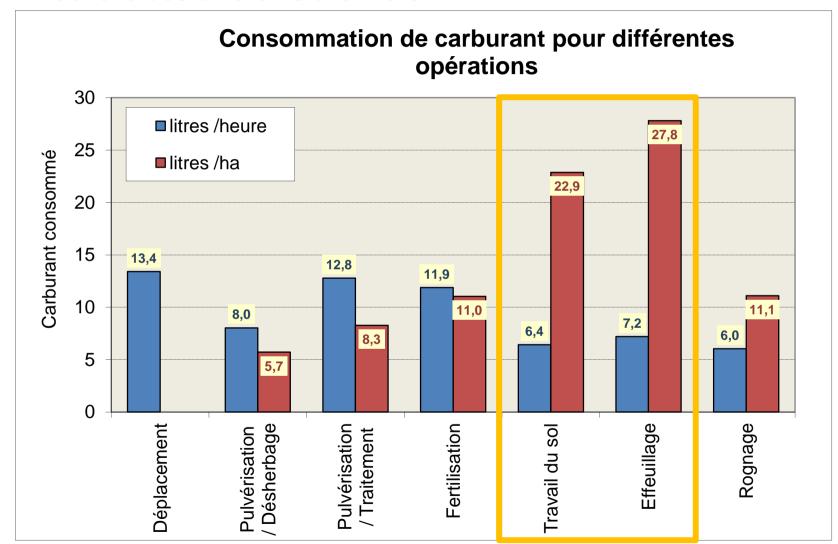
Etude des consommations de carburant en viticulture : résultats 2013-2014

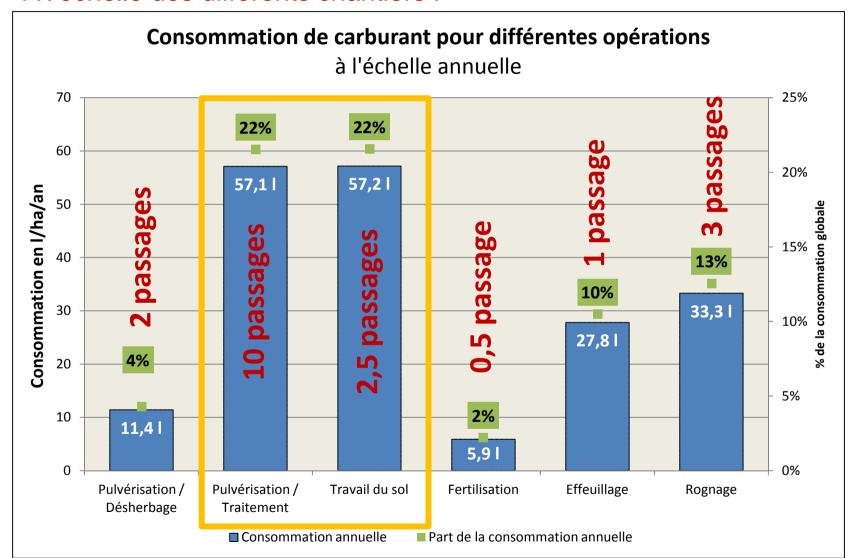
• A l'échelle du chantier de pulvérisation :

Etude des consommations de carburant en viticulture : résultats 2013-2014

• A l'échelle du chantier : l'entretien en vert de la vigne

L'effeuillage			
	débit de chantier	consommation	on de carburant
En moyenne	0,3 ha /heure	7,2 litres /h	28 litres /ha


source : enquête chantier d'effeuillage / effectif de l'échantillon : 1 chantier

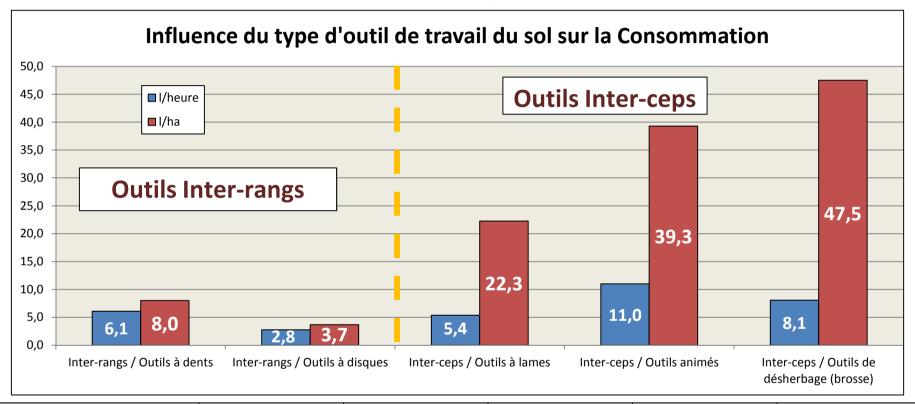

Le Rognage			
	débit de chantier	consommat	ion de carburant
En moyenne	0,7 ha /heure	6,0 litres /h	11,1 litres /ha

source : enquête chantier de rognage / effectif de l'échantillon : 11 chantiers

• A l'échelle des différents chantiers :

• A l'échelle des différents chantiers :

Réduire les Consommations :


Des leviers de réductions déjà identifiés

Le choix du matériel peut influer sur la consommation.

Impact du choix du matériel

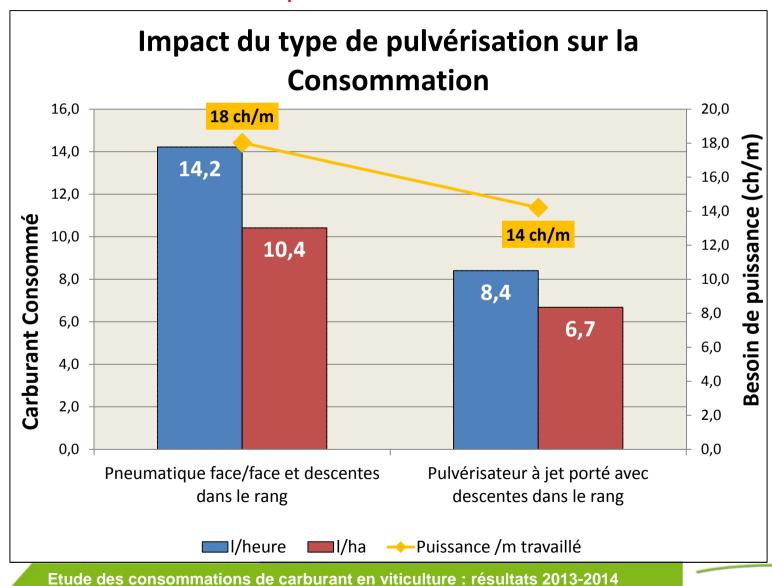
A l'échelle du chantier de Travail du Sol

Type d'outil travail du sol	dents	Inter-rangs / Outils à disques	Inter-ceps / Outils à lames	Inter-ceps / Outils animés	Inter-ceps / Outils de désherbage (brosse)
Débit de chantier moyen	1,4 ha/h	0,8 ha/h	0,2 ha/h	0,3 ha/h	0,2 ha/h

Impact du choix de matériel

• A l'échelle du chantier de Pulvérisation :

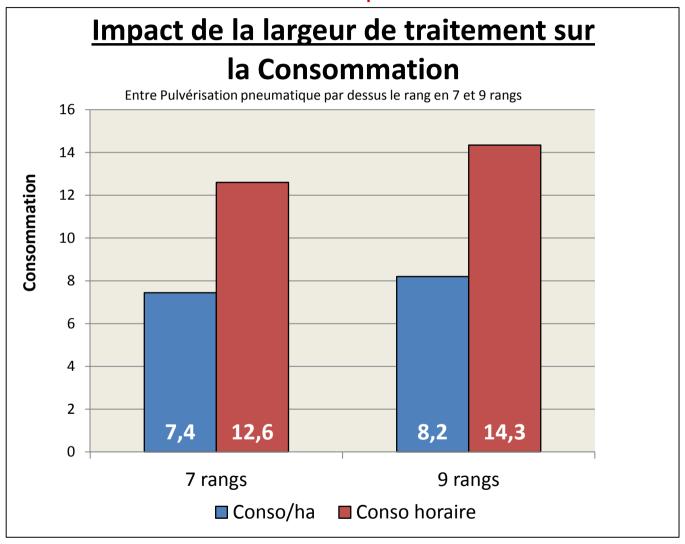
	Pneumatiques traitement/dessus		
Type de pulvérisation	Face/Face	Voute, Canons,	
Echantillon	10	5	
Débit de chantier moyen	1,7	1,7	
Puissance /rang travaillé	17,5	21,6	
Taux de charge moteur %	42%	36%	


Descentes dans le rang			
Pneumatique	Jet Porté		
11	3		
1,4	1,3		
18,5	14,1		
42%	35%		

Descentes dans le rang

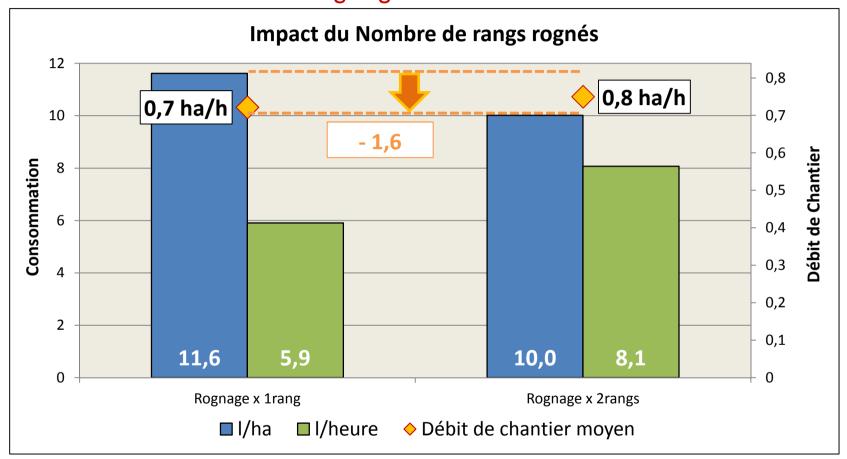
Etude des consommations de carburant en viticulture : résultats 2013-2014

Impact du choix de matériel


• A l'échelle du chantier de pulvérisation :

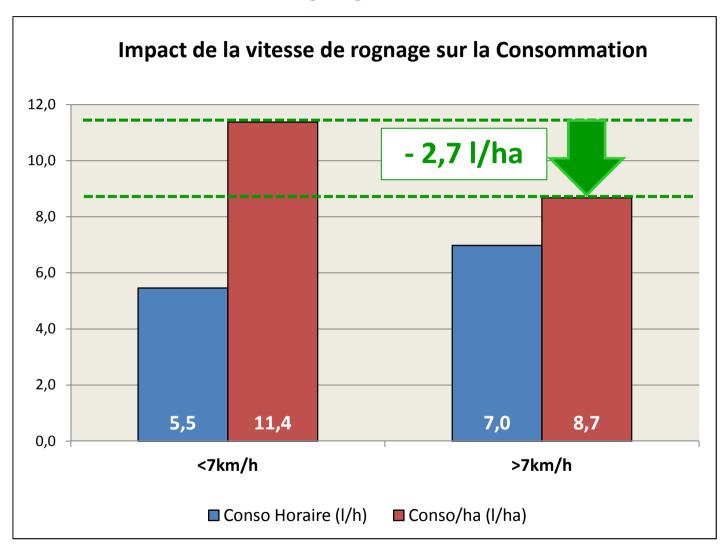
En augmentant la largeur de travail, j'améliore mon débit de chantier et je diminue ma consommation.

Augmenter les largeurs de travail


• A l'échelle du chantier de pulvérisation :

Augmenter les largeurs de travail

A l'échelle du chantier de rognage :


68cv/rang

67cv/rang

En augmentant ma vitesse de travail, j'améliore mon débit de chantier et diminue ma consommation.

Augmenter les vitesses de travail

• A l'échelle du chantier de rognage :

La consommation peut être améliorée en optimisant et en valorisant mieux la puissance de l'enjambeur.

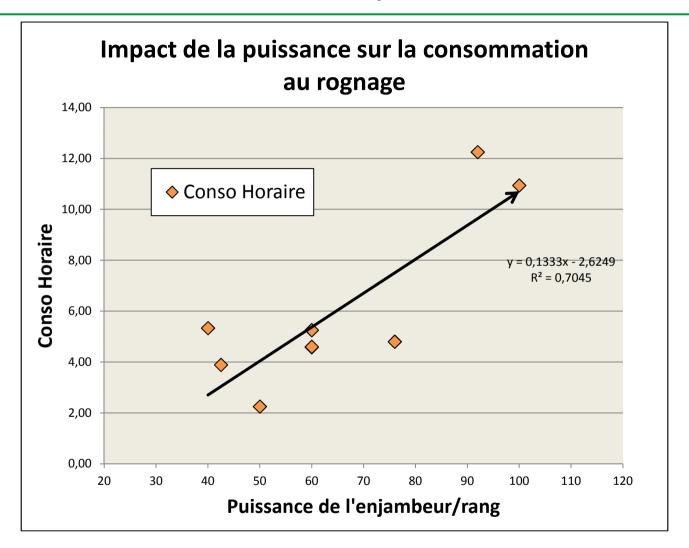
Optimiser l'utilisation de mon enjambeur

lecnoma D

7,71/ha

Rognage

Inter-Ceps



8I/ha

Rognage

Tonte

Optimiser l'utilisation de mon enjambeur

La puissance inutile entraine de la surconsommation!

Conclusions

- Adapter le choix de l'enjambeur au chantier
- Essayer de combiner les passages
- Prendre en compte la consommation engendrée par un outil lors de son investissement
- Si possible augmenter les vitesses de travail

Suite de l'étude

- Consolider les données des chantiers déjà enquêtés
- Enquêter de nouveaux chantiers (récolte, tonte,...)