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Abstract
Vitamins are essential compounds to yeasts, and notably in winemaking con-
texts. Vitamins are involved in numerous yeast metabolic pathways, including
those of amino acids, fatty acids, and alcohols, which suggests their notable
implication in fermentation courses, as well as in the development of aromatic
compounds inwines. Although they aremajor components in the course of those
microbial processes, their significance and impact have not been extensively
studied in the context of winemaking and wine products, as most of the studies
focusing on the subject in the past decades have relied on relatively insensitive
and imprecise analytical methods. Therefore, this review provides an extensive
overview of the current knowledge regarding the impacts of vitamins on grape
must fermentations, wine-related yeast metabolisms, and requirements, as well
as on the profile of wine sensory characteristics. We also highlight the method-
ologies and techniques developed over time to performvitamin analysis inwines,
and assess the importance of precisely defining the role played by vitamins in
winemaking processes, to ensure finer control of the fermentation courses and
product characteristics in a highly complex matrix.

1 INTRODUCTION

Wine is a highly complex product, characterized by the
broad diversity of the aroma profiles it displays, as well
as in the numerous factors that intervene in the overall
composition of the final product (Goode, 2005;Waterhouse

Nomenclature: CE, Capillary electrophoresis; CoA, Coenzyme A;
DAPA, 7,8-Diamino-pelargonic acid; DTB, Dethiobiotin; ELISA,
Enzyme-linked immunosorbent assay; FAD, Flavin adenine
dinucleotide; FMN, Flavin mononucleotide; GC, Gas chromatography;
GTP, Guanosine-5-triphosphate; HMP-P,
4-Amino2-methyl-5-pyrimidine phosphate; HMP-PP,
4-Amino2-methyl-5-pyrimidine diphosphate; HPLC, High performance
liquid chromatography; KAPA, 7-Keto-8-amino-pelargonic acid; MIR,
Mid-infrared; MS, Mass spectrometry; NAD, Nicotinamide adenine
dinucleotide; NADP, Nicotinamide adenine dinucleotide phosphate;
NIR, Near-infrared; PLP, Pyridoxal-5′-phosphate; RP, Reversed-phase;
TMP, Thiamine monophosphate; TPP, Thiamine pyrophosphate; YAN,
Yeast assimilable nitrogen.

et al., 2016). Yeasts are one of the most important of these
factors, notably by contributing to fermenting processes,
and through their requirement of, among other things,
vitamins for the optimal management of several major
metabolic and signaling pathways (Combs & McClung,
2017a, 2017k; Streit & Entcheva, 2003). Consequently, vita-
mins are primordial for certain yeast physiological func-
tions, such as membrane integrity (Majerus et al., 1986).
Thus, it has been found that vitamin deficiencies can lead
to sluggish fermentations, impairing growth and fermen-
tation rates (Ough et al., 1989).
This requirement aspect is a major criterion for defin-

ing growth factors such as vitamins; vitamins are indeed
defined as organic compounds, distinct from fats, car-
bohydrates, and proteins, which are essential in minute
amounts for normal physiological function, and which
cannot be synthetized endogenously by the organism
itself. Consequently, they have to be extracted from the
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growth environment (Combs & McClung, 2017a). Yeast
metabolism, however, includes the de novo synthesis of
several compounds commonly described as vitamins (Perli
et al., 2020), but using this term to qualify said compounds
as such for the wine yeasts considered depends on their
capacity to synthetize them. In an effort to distinguish
these specific compounds from other growth factors, the
term vitamin will nonetheless be used henceforth.
Most of vitamins exist as groups of compounds that are

all chemically related and share a common similar bio-
logical activity that allows them to meet a specific nutri-
tional requirement (Combs & McClung, 2017a; Gregory,
2012) These different forms are frequently called vitamers.
It should be noted, however, that not all the vitamers of
a given vitamin can be qualified as metabolically active
forms, as other forms correspond to dietary forms (Combs
&McClung, 2017l); as such, special emphasis will be given
to the metabolically active forms, which are especially sig-
nificant in wine yeast metabolic processes. These multi-
ple vitamins highlight the broad diversity of these bioac-
tive compounds and, as such, render their analysis in wine
samples complicated, because analytical methods require
the development of techniques to account for all forms of
a given vitamin (Gregory, 2012; Tahir & Xiaobo, 2019).
Interestingly, although vitamins prove to be of great

interest in fermentation and winemaking, with regard to
their significance in numerous yeast metabolic pathways,
so far no review has assessed the different aspects of vita-
mins in oenological contexts. Most of the research on this
topic has been conducted during ancient decades, but has
left certain questions unanswered, such as the detailed
characterization of the impact of vitamins on wine aro-
mas. Furthermore, the absence of any rapid and sensitive
method to perform analysis of vitamins in grape must and
winematrixes in the past decades did not allow the precise
determination of yeast requirements, or the geographical
characterization of grapes related to them.
This review will therefore focus on presenting an

overview of vitamins in the oenological context, as well
as provide a state of the art on the methods used for their
analysis.

2 VITAMINS CLASSIFICATION AND
ROLES

Vitamins, as opposed to other nutrients, do neither serve
structural functions nor lead to the release of significant
energy through their catabolism, but rather hold highly
specific metabolic functions (Combs & McClung, 2017a).
Interestingly, vitamins solely display few close chemical
and functional similarities, and therefore are only empir-
ically categorized (Combs & McClung, 2017a). Thirteen

compounds or group of compounds are currently recog-
nized as vitamins (Table 1), and classified according to
their physical properties, being either water or fat soluble.
Water-soluble vitamins generally display polar or ionizable
groups, whereas fat-soluble vitamins are more commonly
characterized by aromatic and aliphatic groups (Combs &
McClung, 2017l). Interestingly, although fat-soluble vita-
mins share a structure relying on five-carbon isoprenoid
units, water-soluble vitamins do not generally present sim-
ilarities in structures (Combs & McClung, 2017l).
It is also interesting to note that, among the water-

soluble vitamins, a distinction is commonlymade between
ascorbic acid and others; as such, thiamine, riboflavin,
niacin, pantothenic acid, pyridoxine, biotin, folic acid, and
cobalamin are generally grouped under the “B-complex”
or “B-group” denomination. B-group vitamins, contrarily
to ascorbic acid, have been shown to display a catalytic
function, and act as coenzymes in diverse metabolisms
(Baigent & Carpenter, 2016; Combs & McClung, 2017b,
2017c, 2017d, 2017e, 2017f, 2017g, 2017h, 2017i, 2017j, 2017l).
Only few vitamins appear to be directly biologically

active; as such, a metabolic conversion to another species
or a binding to a given protein often stands as neces-
sary in order for the vitamin to become metabolically
active (Combs & McClung, 2017l). Vitamin metabolic
roles mostly concern coenzyme activities in diverse path-
ways, reduction–oxidation systems, antioxidant activities,
as well as membrane integrity, cellular signaling, cellu-
lar protection, and yeast respiration (Combs & McClung,
2017a, 2017l; Perli et al., 2020).
Given the nature of the vitamins present in grape mate-

rials, the present review will henceforth discuss water-
soluble vitamins, cobalamin being excepted, being seldom
found in foods derived from plants (Combs & McClung,
2017j), as well as water-soluble vitamin-like factor myo-
inositol, long considered a vitamin (“vitamin B7”).
For further information regarding vitamins, the authors

advise referring to thorough existing publications (Combs
& McClung, 2017m; Perli et al., 2020; Zempleni et al.,
2006).

3 VITAMINS IN GRAPEMUSTS AND
WINES

Water-soluble vitamins, including ascorbic acid and
B-group thiamine, myo-inositol, pyridoxine, thiamine,
pantothenic acid, folic acid, biotin, and riboflavin, are
important compounds in grapes and wine products,
although only present in minute amounts in these
matrixes. Because all the experiments to determine the
vitamin contents in grape musts and wines have been
carried out over previous decades with analytical methods
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TABLE 2 Vitamer proportion of sun-dried raisins for thiamine, niacin, and pyridoxine (from Panagopoulou et al., 2019)

Thiamine vitamers Niacin vitamers Pyridoxine vitamers
T TPP NM NA PM PN

Proportion 71.9% ± 2.2% 31.0% ± 3.3% 56.2% ± 20.2% 44.0% ± 19.8% 43.1% ± 4.3% 57.3% ± 5.1%

Abbreviations: T, free thiamine; TPP, thiamine pyrophosphate; NM, nicotinamide; NA, nicotinic acid; PM, pyridoxamine; PN, pyridoxine.

of low sensitivity, no certainty exists regarding their proper
ranges in such products.
To our knowledge, no study has been carried out to dis-

tinguish the vitamer proportions of each vitamin in grape
musts and wines. However, a study performed on sun-
dried raisins for a few vitamers (Panagopoulou et al., 2019)
provided an initial estimation of their distribution ten-
dency in grapes (Table 2).

3.1 Vitamin contents in grape musts

3.1.1 Ascorbic acid (C)

Vitamin C is the generic descriptor for compounds pos-
sessing, qualitatively, the biological activity of ascor-
bic acid, that is, 2,3-didehydro-l-threo-hexano-1,4-lactone,
also occurring in its oxidized form, dehydroascorbic acid
(Combs & McClung, 2017b). This water-soluble vitamin
has a structure relying on a six-carbon lactone possessing
a 2,3-enediol structure, and acts as a major antioxidant in
metabolic systems (Combs & McClung, 2017b).
As such, ascorbic acid possesses the capacity of scaveng-

ing molecular oxygen before it undergoes oxidation reac-
tions with phenolic compounds (Bradshaw et al., 2011).
Interestingly, although being deprived from any vitamin
properties, ascorbic acid isomer erythorbic acid possesses
identic oxidation–reduction properties (Ewart et al., 1987),
and can therefore similarly be used as a reducing agent
in enology (Ribéreau-Gayon et al., 1977). Ascorbic acid
functions as an oxidation–reduction system with unsta-
ble oxidized form dehydroascorbic acid (Makaga-Kabinda-
Massard &Maujean, 1994), the reaction being catalyzed by
iron and cooper.
The subsequently formed electrons then are suscepti-

ble of contributing to the reduction of certain wine con-
stituents, such as the ferric iron involved in the iron casse
wine issues (Ribéreau-Gayon et al., 2006). Ascorbic acid
oxidation, in addition, leads to the formation of hydrogen
peroxide H2O2, which can strongly impact wine proper-
ties (du Toit et al., 2006; Oliveira et al., 2011; Waterhouse &
Laurie, 2006).
In addition, ascorbic acid also presents a protective

effect against must oxidations catalyzed by tyrosinase and
laccase, standing as a substrate to the latter (Dubernet
et al., 1977), limiting their action by monopolizing oxygen

through its fast reaction speed, rather than inhibiting the
enzymes (Ribéreau-Gayon et al., 2006).
It is also interesting to note that the quinones produced

through oxidation reactions can be reduced back to their
associated phenols by the coupled oxidation of ascorbic
acid (Cheynier&da Silva, 1991), therefore influencingwine
composition and aroma profile.
Ascorbic acid content in grape musts has been shown

to range between 30 and 572 mg/L (see Table 3), the
high disparity in content measured resulting in particular
from the dates of the experiments performed and the low
sensitivity of the methods employed. It can therefore be
assumed that ascorbic acid content does not actually reach
such a high maximal value. Interestingly, this concen-
tration decreases continuously during fermentation pro-
cesses, and is reduced by at least half by the end of fermen-
tation (Ournac, 1966), dropping to concentrations ranging
between 1 and 30mg/L (Genevois&Ribéreau-Gayon, 1947;
Moreno&Peinado, 2012;Ournac, 1966), a decrease that has
been attributed to enzymatic oxidation (Lodi, 1943).
It is also interesting to note that there does not seem to

be any significant difference between white and red wines
in terms of ascorbic acid content (Moreno & Peinado,
2012). Aging also significantly impacts vitamin C content
in wines, because young wines present higher concentra-
tions than older ones, this decrease being continuous over
time (Ournac, 1966).

3.1.2 Thiamine (B1)

Thiamine, also known as vitamin B1 or aneurin, is a
water-soluble vitamin belonging to the B complex, whose
trivial designation is 3-(4-amino-2-methylpyrimidin-5-
pyrimidinyl)−5-(2-hydroxyethyl)−4-methylthiazolium
(Combs & McClung, 2017c). Thiamine consists of a
pyrimidine ring and a thiazole ring, both connected by
a carbon link (Combs & McClung, 2017c). Although the
most biologically active form of thiamine appears to be
thiamine pyrophosphate (TPP), also known as cocarboxy-
lase, the vitamin also exists intracellularly as thiamine
monophosphate (TMP) and thiamine triphosphate (Perli
et al., 2020).
Thiamine contents in grape musts have been reported

to range between 80 µg/L and 1.2 mg/L (see Table 3), their
average ranging between 0.1 and 1 mg/L. Interestingly, this
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vitamin is characterized by the capacity of being accumu-
lated in high amounts by yeasts (Ough et al., 1989). Red
wines appear to hold higher thiamine concentrations than
white wines (Schanderl, 1950), seemingly indicating that
exocarps and seeds are richer in this compound than pulps
and juices are. Thiamine contents almost entirely disap-
pear during alcoholic fermentation, as wine is estimated to
possess only 3% to 5% of the initial concentration in fresh
juices (Hall et al., 1956), and generally, thiamine content
appears to be maintained during wine aging (Perlman &
Morgan, 1945).

3.1.3 Riboflavin (B2)

Riboflavin is a water-soluble vitamin from the B group,
whose trivial designation is 7,8-dimethyl-10-(1′-d-
ribityl)isoalloxazine. The compound was previously
known as vitamin B2, vitamin G, or lactoflavin (Combs
& McClung, 2017l), and exists in two metabolically active
phosphorylated forms, flavin mononucleotide (FMN) and
flavin adenine dinucleotide (FAD) (Combs & McClung,
2017l). The vitamin consists of a substituted isoalloxazine
nucleus containing reducible nitrogen atoms, as well as a
ribityl side chain (Combs & McClung, 2017d).
Riboflavin contents in grape musts have been shown to

range between 3 µg/L and 1.45 mg/L (see Table 3), their
average ranging between 1 and 100 µg/L, increasing to con-
centrations between 8 and 133 µg/L in white wines, and
0.47 to 1.9 µg/L in red wines (Ribéreau-Gayon, Peynaud,
Sudraud, et al., 1975). This augmentation results notably
from riboflavin biosynthesis performed by yeast Saccha-
romyces cerevisiae during alcoholic fermentation processes
(Santos et al., 1995; Tamer et al., 1988). As such, it seems
highly probable that riboflavin in musts and wines results
from yeasts rather than extracted from the solid parts of the
grapes harvested (Ournac, 1970).
The photosensitivity of riboflavinmay often lead to rapid

depletions in its levels in wine while aging (Moreno &
Peinado, 2012); however, this diminution appears to occur
faster in white wines than in red ones (Peynaud & Lafour-
cade, 1958), seemingly indicating the protective effect of
dark colors on riboflavin, as well as the positive action of
tannins that bind riboflavin and therefore limit its photoac-
tivation (Jackson, 2008).

3.1.4 Niacin (B3)

Niacin, also known as vitamin B3, is the generic descriptor
for a B-group water-soluble vitamin and a generic descrip-
tor for pyridine 3-carboxylic acid and derivatives, including
both nicotinamide and nicotinic acid, that exhibit a nicoti-

namide biological activity (Combs & McClung, 2017l),
which depends on the structural presence of a pyridine
nucleus substituted with a β-carboxylic acid or associated
amine, in which the nitrogen is capable of undergoing
reversible redox reactions, adjacent to open pyridine car-
bon atoms (Combs&McClung, 2017e). Niacin exists under
several forms in grape musts and wine media, and can be
found in the free nicotinamide forms nicotinic acid, nicoti-
namide, ethyl nicotinate, nicotinuric acid, nicotinamide
adenine dinucleotide (NAD), and nicotinamide adenine
dinucleotide phosphate (NADP) (Lafourcade et al., 1956),
the latter two being the metabolically active forms (Jack-
son, 2008).
Nicotinamide content in grape musts ranges between

0.86 and 2.56 mg/L (see Table 3), although the major-
ity of contents reported are in the range of a few mil-
ligrams per liter. In addition, the products resulting from
red grape varieties display higher contents thanwhite ones
(Castor, 1953). However, this concentration drops to values
between 0.11 and 0.42 mg/L in wines (Castor, 1953; Lafour-
cade et al., 1956), this significant decrease being associated
with the high consumptions exerted by yeasts, in spite of
their capacity to synthetize the compound. However, some
species, such asTorulaspora delbrueckii, lead to unchanged
nicotinamide content in wines (Lafourcade et al., 1956).
Nicotinic acid concentrations reach the same average

magnitudes as nicotinamide and have been reported to
range between 0.79 and 8.80 mg/L (see Table 3). Nico-
tinic acid has been demonstrated to increasemalic acid fer-
mentation speeds when added to the fermenting medium
(Peynaud, 1956).

3.1.5 Pantothenic acid (B5)

Pantothenic acid, also named vitamin B5, is a water-
soluble vitamin, whose trivial designation is dihydroxy-
β,β-dimethylbutyryl-β- alanine, formerly named pantoyl-
β-alanine. This compound has the particularity of exist-
ing in two metabolically active forms, that is, a coenzyme
A (CoA) and an acyl-carrier protein, that play key roles
in metabolism, functioning as a coenzyme in fatty acid
metabolism (Combs & McClung, 2017h).
Grapes were reported to contain an average of 8.5 and

6.8 mg/L pantothenic acid in red and white cultivars,
respectively, its high range of variations in content sug-
gesting that limitationsmay occur during the fermentation
processes, where the must was characterized by low con-
centrations (Hagen et al., 2008). It appears that the com-
pound is extracted in high proportions from the grapes to
the musts, because 66% to 93% of the initial content can
be found in the musts (Hall et al., 1956), leading to must
concentrations ranging between 0.16 µg/L and 10.50 mg/L
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(see Table 3), althoughmost of the studies presented ranges
averaging at contents of 0.1 to 1 mg/L.
Additional losses are to be observed during aging, rang-

ing from 12% to 61% in a 5 years period (Castor, 1953).

3.1.6 Pyridoxine (B6)

Pyridoxine, also called vitamin B6, is one of the eight
water-soluble vitamins in the B complex, character-
ized by a tetra-substituted pyrimidine ring, linked to a
methyl, an hydroxyl, and two methyl-hydroxyl groups
(Perli et al., 2020). The vitamin exists in two active forms,
pyridoxamine-5′-phosphate and pyridoxal-5′-phosphate
(PLP), that can be converted from one form to the other
(Combs & McClung, 2017l).
Amounts of pyridoxine in grapes reach an average

of 1.25 mg/L with red cultivars, but differ and drop to
0.88 mg/L with white cultivars (Hall et al., 1956). A total of
50% to 90% of pyridoxine contained by grapes are extracted
in the musts, leading to concentrations that have been
reported to range between 0.14 and 2.9 mg/L (see Table 3),
their average ranging between 0.1 and 1 mg/L, before fur-
ther decreasingwhen reaching the finalwine product (40%
in white wines and 60% in red wines, respectively) (Hall
et al., 1956), therefore showing a significant loss during fer-
mentation.

3.1.7 myo-Inositol

myo-Inositol is the major form of inositol observed,
and is a water-soluble vitamin, structured as a hydrox-
ylated cyclic six-carbon compound, whose trivial desig-
nation is cis-1,2,3,5-trans-4,6-cyclohexanehexol (Combs &
McClung, 2017k). It is also the only stereoisomeric form
of cyclohexitol to present a biological activity (Combs &
McClung, 2017k), whereas two minor (scyllo- and chiro-)
forms are also found in wine products (Waterhouse et al.,
2016).
Inositol contents were reported to range between 340

and 710 mg/L in grape musts (see Table 3), sufficient to
integrally cover yeast requirements (Ournac, 1970). No
significant diminution in inositol contents is observed
in wines; however, a difference in concentrations has
been reported between white and red wines, reach-
ing 220 to 730 mg/L and 290 to 334 mg/L, respec-
tively (Ribéreau-Gayon, Peynaud, Ribéreau-Gayon, et al.,
1975). Inositol, which is a stable compound, is, how-
ever, at risk of disappearing through microbial fermenta-
tion during or following malolactic fermentation (Ournac,
1970).

3.1.8 Biotin (B8)

Biotin, also known as vitamin B8, is a water-soluble vita-
min, whose trivial designation is cis-hexahydro-2-oxo-1H-
thieno[3,4-d]imidazole- 4-pentanoic acid, and formerly
known as vitamin H or coenzyme R. The structure of
biotin is formed by an imidazole, which is fused to a sulfur
tetrahydrothiophene ring, substituted with a valeric acid
chain (Perli et al., 2020).
Grapes have been reported to contain low amounts of

biotin when compared to other fruits (Radler, 1957), its
concentrations, however, varying between vine cultivars
(Ough & Kunkee, 1968), because, in addition, red grapes
have been shown to contain more biotin than white grapes
(Ough&Kunkee, 1968). In red grape juices, biotin contents
indeed reach an average of 2.85 µg/L, whereas they drop to
1.47 µg/L inwhite grape juices (Ough&Kunkee, 1968). This
significant difference, however, appears to be typical for all
B-group vitamins (Hall et al., 1956). More generally, biotin
content in grapemusts has been reported to range between
0.1 and 60.0 µg/L in previous studies (see Table 3), therefore
asserting the low concentrations displayed by this vitamin
in such products. In addition, it has been demonstrated
that biotin content drops by 95% during alcoholic fermen-
tation (Castor, 1953), leading to lowered concentrations in
wines than in grape musts.

3.1.9 Folic acid (B9)

Folic acid, also called pteroylmonoglutamic acid or vita-
min B9, is the generic descriptor for all compounds sharing
its biological activity, a group of heterocyclic compounds
based on the N-[(6-pteridinyl)methyl]-p-aminobenzoic
acid skeleton conjugated with glutamic acid residues
(Combs & McClung, 2017l). Pteroylglutamic acid is con-
sidered as the representative form of the folates group,
whereas its metabolically active forms are pteroylpolyglu-
tamates (Combs & McClung, 2017l). The group includes
a large number of pteridine derivatives, their pteridine
nucleus being differently hydrogenated, capable of binding
single-carbon units to nitrogen in positions 5 and 10, and
characterized by glutamyl residues (Combs & McClung,
2017i).
Folic acid content in grape musts ranges between 3 and

50 µg/L−1 (see Table 3), although most of the contents
reported are of amagnitude of severalmicrograms per liter,
and those concentrations decrease slightly to reach 0.4 to
4.5 µg/L in wines (Moreno & Peinado, 2012). In addition,
no diminution in these contents has been observed during
wine aging (Ournac, 1970), even though folic acids present
a light lability.
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3.2 Impact of winemaking practices on
vitamin contents in wine products

In addition to the significant influence of the original
grape material on the must and wine vitamin contents, it
appears that winemaking practices are able to modulate
and strongly impact the concentrations that are to be found
in such products.

3.2.1 Addition of sulfites

Sulfiting processes lead to a nearly complete loss of
thiamine in wines (Peynaud & Lafourcade, 1958).
Indeed, bisulfite has been shown to trigger the cleav-
age of thiamine, which disappears to form (6-amino-
2-methylpyrimid-5-yl)methanesulfonic acid and 5-,B-
hydroxyethyl-4-methylthiazole (Leichter & Joslyn, 1969).
Diminutions in riboflavin content following sulfite addi-
tions have been reported (Hall et al., 1956; Perlman &
Morgan, 1945), although no agreement exists on the
matter, because contradictory conclusions have also
been drawn (Peynaud & Lafourcade, 1958). Sulfite addi-
tions have also been shown to protect pantothenic acid
(Perlman & Morgan, 1945) and myo-inositol (Peynaud &
Lafourcade, 1955) from bacterial degradations.

3.2.2 Addition of clarifying agents

Additions of potassium ferrocyanide and bentonite have
been demonstrated to have significant effects on several
B-groups vitamins, including thiamine, riboflavin, pan-
tothenic acid, pyridoxine, folic acid, and biotin, leading
to decreases that can range between 9% and 67% of losses
(Champeau et al., 1963).
Likewise, kaolin additions notably impact vitamin con-

centrations in wines, leading significant niacin, biotin,
pyridoxine, and riboflavin contents to drop from 43% to
53% in treated wines (Champeau et al., 1963).
Clarifications using gelatin and tannins, however, have

been proved to slightly impact most vitamin contents,
leading to decreases ranging between 4% and 18%. How-
ever, it significantly affects biotin concentrations in wine,
because 61% decreases have been recordedwhen compared
to untreated wines (Champeau et al., 1963).

3.2.3 Vatting length and lees

Vitamin contents in wine also appear to be related to the
time of racking, because a long contact period between
wines and lees after the completion of fermentation allows

the exsorption of vitamin resources by yeasts into the liquid
medium (Ournac & Flanzy, 1967), as well as the transfer of
vitamin contents from the solid part of the harvest toward
the wines (Lafourcade et al., 1956). As such, longer vat-
ting periods have been shown to lead to higher thiamine,
riboflavin, and niacin contents in wines (Lafourcade et al.,
1956; Moreno & Peinado, 2012; Ournac & Flanzy, 1967).

3.2.4 Vitamin enrichment

Thiamine and ascorbic acid additions to grape musts can
be operated during winemaking course. As such, enrich-
ment can contribute avoiding depletions in these growth
factors to prevent nutritional deficiencies and their result-
ing undesirable impacts on wines, as well as to reinforce
antioxidant properties of the musts.

Thiamine enrichment
Thiamine hydrochloride can therefore be used as a pro-
cessing aid, and added to musts in order to accelerate
alcoholic fermentation and limit the formation of sul-
fur dioxide-binding compounds during alcoholic fermen-
tation, which can allow reductions in added SO2 doses
to grape musts (Labuschagne & Divol, 2021; Organisa-
tion Internationale de la Vigne et du Vin, 2020; Ribéreau-
Gayon et al., 2006). Current regulations allow for maximal
legal doses of 60 mg/hl of thiamine hydrochloride added
to the must (Commission Européenne, 2019; Organisa-
tion Internationale de la Vigne et du Vin, 2020). Similarly,
thiamine hydrochloride can be added to base wines des-
tined for secondary fermentation in the course of sparkling
wines production, in order to ensure proper multiplica-
tion of yeasts in bottles or closed tanks during this phase.
Similarly to primary fermentation regulations, a maxi-
mal legal dose of 60 mg/hl of thiamine hydrochloride
added is allowed by current governances (Commission
Européenne, 2019; Organisation Internationale de la Vigne
et du Vin, 2020).

Ascorbic acid enrichment
Ascorbic acid can similarly be used as an additive, either
in its ascorbic acid form or as erythorbic acid, to act as
an antioxidant in grape products. The addition can be
operated at different winemaking stages, either before the
grape crushing to protect the aromatic compounds of the
berry against oxidation or immediately after such crush-
ing to gain a similar protective effect (Organisation Inter-
nationale de la Vigne et du Vin, 2020). Finally, ascorbic
acid additions to wine can be performed during bottling to
ensure protection against oxidation and its resulting alter-
ations of color and flavor. Current regulations allow for
maximal doses in grape musts, either through additions at
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the grape or must stages, of 250 mg/L ascorbic acid; simi-
larly, a maximal addition of 250 mg/L in wines is allowed,
the final ascorbic acid dose being authorized to reach a
maximal total of 350mg/L should additions have also been
made on grape or musts (Commission Européenne, 2019;
Organisation Internationale de la Vigne et du Vin, 2020).
However, it appears preferable to proceed to additions at
concentrations between 50 and 100 mg/L, because higher
additions are susceptible of affecting wine taste (Ribéreau-
Gayon et al., 2006). It is advised to use both sulfur diox-
ide and ascorbic acid to avoid the formation of undesirable
molecules, such as hydrogen peroxide, following ascorbic
acid oxidation (Ribéreau-Gayon et al., 2006). Both sulfur
dioxide and ascorbic acid have different antioxidant prop-
erties, because the first is characterized by a stable and
delayed effect that cannot prevent iron casse, but persists
even in case of subsequent oxygenations, whereas the lat-
ter has an immediate action against oxidation that is able
to avoid iron casse, but cannot persist in case of prolonged
contact with oxygen (Ribéreau-Gayon et al., 2006).

4 WINE-RELATED YEASTS
METABOLISM AND REQUIREMENTS

Vitamin concentrations in wines are not usually limiting
in grape musts, because additions of a mixture of biotin,
thiamine, myo-inositol, pantothenic acid, nicotinic acid,
and pyridoxine in several musts only led to limited effects
on fermentations (Sablayrolles & Salmon, 2001). However,
growth responses were reported for 38 kinds of yeasts cul-
tured in defined medium supplemented with various con-
tents of vitamins; thiamine requirements appeared for 15
species, 14 for pantothenic acid, six for nicotinic acid, 36
for biotin, four for inositol, six for pyridoxine, and none
for riboflavin (Burkholder, 1943). Therefore, those five vita-
mins have been described as essential vitamins required by
yeasts (Burkholder, 1943).
In the subsequent descriptions of vitamin significance

in yeast metabolisms, Saccharomyces cerevisiae will be
described in particular, and therefore considered as a
model species for other wine-related yeasts.

4.1 Vitamin biosynthesis and uptake by
wine-related yeasts

4.1.1 Vitamin de novo biosynthesis
mechanisms

Most wild-type strains of S. cerevisiae are phototrophic for
all B-group vitamins, biotin being excepted, as its biosyn-
thesis appears to be a variable trait between strains (Hall &

Dietrich, 2007). Most strains of S. cerevisiae are not capa-
ble of synthetizing biotin de novo, although possessing the
ability of performing the last three steps of biotin biosyn-
thesis and generating biotin from its precursors 7-keto-
8-amino-pelargonic acid (KAPA), 7,8-diamino-pelargonic
acid (DAPA), or dethiobiotin (DTB) (Ohsugi & Imanishi,
1985).
B-group vitamin de novo biosynthesis pathways have be

shown to be highly interconnected in the model yeast S.
cerevisiae (Figure 1); as such, the pyrimidine substrate that
ultimately leads to the formation of thiamine is synthetized
in yeast cells fromhistidine and PLP (Zeidler et al., 2003), a
phosphorylated pyridoxine vitamer, whereas the thiamine
thiazole moiety synthesis has been shown to notably pro-
ceed in relationship to a reaction that consumesNAD+ as a
substrate and releases nicotinamide as a by-product (Chat-
terjee et al., 2007), therefore asserting the existing linkage
between thiamine and niacin.
Contrarily to other biological kingdoms, yeasts and

other fungi are not able of directly synthetizing ascorbic
acid from aldoses, performing a de novo biosynthesis path-
way leading to the formation of its five-carbon analogue,
erythro-ascorbic acid, highly resembling the biosynthesis
pathway for the formation of ascorbic acid that can be
found in plants (Hancock et al., 2000). erythro-Ascorbic
acid is synthetized from arabinose, initially oxidized by
a NAD-specific arabinose dehydrogenase into the corre-
sponding aldonolactone, that spontaneously rearranges
into a more stable isomer, before being finally oxidized by
an FAD-containing enzyme. The final product then spon-
taneously isomerizes to erythro-ascorbic acid (Loewus,
1999).
Although the pathway leading to the synthesis of the

valeric acid side chain of biotin has still not been entirely
detailed (Hall & Dietrich, 2007), it has been long estab-
lished that reactions involved in the formation of biotin
ring structures from intermediates KAPA and DAPA are
highly conserved among both yeasts and bacteria. This
pathway corresponds, successively, to an initial conver-
sion of KAPA to DAPA by an DAPA aminotransferase,
DAPA being further converted to DTB through the activ-
ity of a dethiobiotin synthetase (Phalip et al., 1999), before
the final conversion of DTB to biotin by a biotin synthase
(Berkovitch et al., 2004). It is interesting to note that the
first reaction step in the formation of biotin from KAPA
connects biotin metabolism to pyridoxine metabolism,
because the DAPA aminotransferase performing the reac-
tion notably requires PLP as cofactor (Phalip et al., 1999).
The de novo pathway for biosynthesis of folates by

yeasts is well-conserved throughout evolution, and
is realized through the synthesis of folates pteridine
ring (2-amino-4-hydroxy-6-hydroxymethyldihydropterin
diphosphate) from guanosine-5-triphosphate (GTP),



VITAMINS IN WINE. . . 3003

F IGURE 1 Water-soluble vitamin biosynthesis pathways interconnections in S. cerevisiae
ArP, 5-amino-6-ribitylamino-2,4(1H,3H) pyrimidinedione; B, biotin; DAPA, 7,8-diamino-pelargonic acid; DHPB, 3,4-dihydroxy-2-butanone
4-phosphate; eAA, erythroascorbic acid; GTP, guanosine triphosphate; HET-P, 5-(2-hydroxyethyl)−4-methyl-thiazole phosphate; HMH2NDP,
6-hydroxymethyl-7,8-dihydroneopterin diphosphate; HMP-PP, 4-amino-5-hydroxymethyl-2-methylpyrimidine diphosphate; KAPA,
7-keto-8-amino-pelargonic acid; NaAD, nicotinate adenine dinucleotide; NAD(H), nicotinamide adenine dinucleotide; NADP(H),
nicotinamide adenine dinucleotide phosphate; PA, pantothenic acid; pABA, para-aminobenzoic acid; PLP, pyridoxal phosphate; RF,
riboflavin; THF, tetrahydrofolate; TMP, thiamine monophosphate.
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common precursor to riboflavin, and its further conden-
sation with para-aminobenzoic acid by dihydropteroate
synthase (Rossi et al., 2016). The resulting compound,
7,8-dehydropteroate, undergoes, successively, the addition
of a glutamate moiety, and a subsequent reduction to form
the first biological form of folate, tetrahydrofolate (Rossi
et al., 2016).
myo-Inositol is formed from glucose-6-phosphate

through two enzyme-catalyzed reactions: an initial
conversion of glucose-6-phosphate to myo-inositol-1-
phosphate by the associated synthase (Donahue & Henry,
1981), before its subsequent dephosphorylation by the
heterodimeric enzyme inositol 3-phosphate monophos-
phatase (Murray & Greenberg, 2000).
Niacin, including its essential redox cofactor NAD+

form (Voet et al., 2006), is formed from tryptophan in a
nine reactions de novo biosynthesis pathway, for which
several enzymes are characterized by a strict molecu-
lar oxygen requirement, therefore explaining the neces-
sity of ensuring nicotinic acid sufficient presence for S.
cerevisiae in anaerobic conditions (Panozzo et al., 2002),
and as a consequence, during grape carbonic macerations,
notably.
Pantothenic acid is synthetized through the adenosine

triphosphate-dependent condensation of pantoate with β-
alanine, catalyzed by pantothenate synthetase (Leonardi
& Jackowski, 2007). Interestingly, pantoate is formed from
2-keto-isovalerate (Leonardi & Jackowski, 2007; Lussier
et al., 1997), a compound that, as an α-ketoacid, is linked
to the Ehrlich metabolic pathway for the degradation of
amino acids, in which pyridoxine, biotin, and thiamine all
have crucial roles (Müller, 2014, 2018), further highlighting
the intricate connections between all B-group vitamins’
respective metabolisms.
De novo biosynthesis of pyridoxine’s active form PLP

by S. cerevisiae involves a reaction catalyzed by an het-
erodimeric enzyme PLP synthase (Raschle et al., 2005), in
which glutamine is hydrolyzed to form ammonia, further
channeled to the enzyme synthase subunit active site to be
condensed with ribulose-5-phosphate and glyceraldehyde-
3-phosphate in order to yield PLP (Hanes et al., 2008).
Riboflavin is synthetized de novo from GTP and

ribulose-5-phosphate through a succession of enzymatic
reactions, both compounds leading to the formation
of, respectively, 5-amino-6-ribityl-aminouracil and 3,4-
dihydroxy-2-butanone-4-phosphate, fused to form 6,7-
dimethyl-8-ribityl lumazine through the activity of enzyme
6,7-dimethyl-8-ribityl lumazine synthase, further con-
verted to riboflavin by riboflavin synthase (Gudipati
et al., 2014). Interestingly, GTP results from acetyl-CoA
conversions (Liu et al., 2020), itself being synthetized
from pantothenic acid (Combs & McClung, 2017h), and
its metabolism being impacted by biotin (Hoja et al.,

2004; Morris et al., 1987), further connecting riboflavin
metabolism to those of other B-group vitamins.
Saccharomyces cerevisiae biosynthesis of thiamine pre-

cursor 4-amino2-methyl-5-pyrimidine diphosphate (HMP-
PP) is operated by the initial formation of 4-amino-2-
methyl-5-pyrimidine phosphate (HMP-P) from PLP and
histidine (Coquille et al., 2012), then by its subsequent
phosphorylation to HMP-PP by HMP-P kinase (Kawasaki
et al., 2005).

4.1.2 Vitamin uptake from extracellular
environments

In addition to de novo biosynthesis pathways, metabolic
processes for the uptake of numerous vitamers from the
cell extracellular environment exist (Table 4) (Paalme et al.,
2014). De novo biosynthesis of vitamins by yeasts is a
complex and demanding process, and such uptakes allow
the cell to spare intracellular resources to permit other
metabolic pathways, and are often preferentially adopted
by the yeast (Ericsson et al., 2008; Paalme et al., 2014).
As such, control systems have evolved in yeasts for the

biosynthesis and uptake of vitamins, such as the highly
controlled gene system existing for thiamine: the expres-
sions of the genes that encode the enzymes involved in
the metabolism of thiamine in S. cerevisiae (THI genes)
are severely repressed by exogenous thiamine and con-
comitantly activated by its absence, whereas TPP acts as
corepressor in the processes (Nishimura et al., 1991, 1997;
Nosaka et al., 2005).

4.1.3 Bioconversion of vitamins towards
their active forms upon biosynthesis or uptake

Upon biosynthesis or uptake, several vitamins require fur-
ther conversions in order to attain their metabolically
active forms (Table 5) and therefore, subsequently inter-
vene in biochemical pathways.
As such, both biotin and niacin undergo bioconversions

involved in their respective de novo biosynthesis pathways
in order to attain their metabolically active forms. Indeed,
should biotin be taken up as KAPA or DAPA through the
Bio5 transporter, the compoundwould go through the final
reaction steps of the biosynthesis pathway to form biotin
(Phalip et al., 1999). Similarly, nicotinic acid obtained from
the extracellular environment is converted to nicotinic
acid mononucleotide, to subsequently enter the niacin de
novo biosynthetic pathway and be converted toward active
forms NAD and NADP (Perli et al., 2020). Nicotinamide
riboside resulting from uptake through the Nrt1 trans-
porter is then converted to both active forms as well, either
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TABLE 4 Transporters for extracellular vitamin uptake in Saccharomyces cerevisiae

Vitamin Transporter Substrate Km Reference
Biotin Vht1

Bio5a
Biotin
KAPAa and DAPAa

0.3 µM
Unknown

Phalip et al., 1999; Rogers & Lichstein,
1969a, 1969b; Stolz et al., 1999

Folic acid unknown unknown Unknown Bayly et al., 2001; Güldener et al.,
2004; Ouameur, 2011

Inositol Itr1p
Itr2p

myo-Inositol Unknown
0.46 mM

Lai & McGraw, 1994; Nikawa et al.,
1991

Niacin Tna1p
Nrt1

Nicotinic acid
Nicotinamide
riboside

1.7 µM
22 M

Belenky et al., 2008; Belenky et al.,
2011; Llorente & Dujon, 2000

Pantothenic
acid

Fen2p Pantothenic acid 3.5 µM Stolz & Sauer, 1999

Pyridoxine Tpn1p Pyridoxine
Pyridoxal
Pyridoxamine

0.55 µM Stolz & Vielreicher, 2003

Riboflavin Mch5p Riboflavin 17 µM Reihl & Stolz, 2005; Spitzner et al.,
2008

Thiamine Thi7p (Thi10)
Thi71p
Thi72p

Thiamine 0.18 µM
Unknown
Unknown

Enjo et al., 1997; Mojzita & Hohmann,
2006; Singleton, 1997

aBio5 takes KAPA and DAPA up into S. cerevisiae, although not directly providing biotin. Both compounds are precursors in the biotin biosynthesis pathway
(Phalip et al., 1999), contributing to the accumulation of the vitamin in the cell.

TABLE 5 Relevant forms of wine-related vitamins and their associated metabolic functions (from Combs & McClung, 2017a, 2017h)

Vitamin group Vitamers Active forms Metabolic functions
Vitamin C Ascorbic acid

Dehydroascorbic acid
Ascorbic acid
Dehydroascorbic acid

Reductant in hydroxylations

Vitamin B1 Thiamine TPP Coenzyme for decarboxylations of 2-keto acids and
transketolations

Vitamin B2 Riboflavin FMN
FAD

Coenzyme in redox reactions of fatty acids and TCA
cycle.

Vitamin B3 Nicotinic acid
Nicotinamide

NAD
NADP

Coenzyme for several dehydrogenases

Vitamin B5 Pantothenic acid CoA
Acyl carrier protein

Coenzyme in fatty acid metabolism

Vitamin B6 Pyridoxol
Pyridoxal
Pyridoxamine

PLP
Pyridoxamine-5′-phosphate

Coenzyme in amino acid metabolism

Inositol myo-Inositol myo-Inositol Affects membrane structure and function, second
messenger of Ca2+ signaling

Vitamin B8 Biotin Biotin Coenzyme for carboxylations
Vitamin B9 Folic acid

Polyglutamyl folacins
Pteroylpolyglutamates Coenzyme in single-carbon metabolism
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by prior conversion toward nicotinic acid or by being phos-
phorylated to precursor nicotinamide nucleotide (Perli
et al., 2020).
Similarly, B-group vitamins pyridoxine and thiamine are

converted toward their respective active forms PLP and
TPP through the action of kinases that ensure their ade-
quate phosphorylation upon uptake (Di Salvo et al., 2011;
Müller et al., 2009). If pyridoxine be takenup from the envi-
ronments in forms pyridoxine or pyridoxamine, its appro-
priate conversion toward active form PLP requires addi-
tional oxidation following the preceding phosphorylation
(Loubbardi et al., 1995). Interestingly, although bacteria are
able to directly perform TPP synthesis from TMP result-
ing from the biosynthesis pathway, yeasts require TMP
dephosphorylation toward thiamine before being able to
perform the second conversion step toward TPP (Müller
et al., 2009).
In an equivalent way, the biologically active coenzyme

forms of riboflavin, FMN and FAD, are synthetized from
the riboflavin taken up from the yeast extracellular envi-
ronment by a riboflavin kinase and an FAD synthetase,
respectively (Santos et al., 2000; Wu et al., 1995).
The active form, CoA, of pantothenic acid is obtained

through several successive reactions, notably involving
kinases and ligases (Leonardi & Jackowski, 2007); the vita-
min’s second metabolically active form, the acyl-carrier
protein, however, can then be obtained by the action of
a transferase on the previously formed CoA (Leonardi &
Jackowski, 2007).
Finally, the two metabolically active forms of vitamin

C, ascorbic acid and dehydroascorbic acid (Combs &
McClung, 2017b), act as an oxidation–reduction system.
Although the reaction involved is theoretically reversible,
dehydroascorbic acid generally disappears, being instable
in wine substrates (Makaga-Kabinda-Massard &Maujean,
1994).

4.2 Roles of wine-related vitamins in
yeast metabolism

Vitamins are involved in several pathways of yeast
metabolism, and intervene in numerous physiological
functions (Table 5), therefore highlighting their signifi-
cance in yeast biological reactions, and as such, in fermen-
tation and other notable winemaking processes.
As an antioxidant, ascorbic acid, through its different

forms, composes a reversible redox system, and acts as an
effective quencher of free radicals such as singlet oxygen
(Combs &McClung, 2017b). In addition, ascorbic acid acts
as cosubstrate for numerous enzymes, including mono-
and dioxygenases (Combs & McClung, 2017b), and in par-
ticular, Fe- and 2-oxoglutarate-dependent dioxygenases,

involved in a wide range of metabolic functions (Kuiper &
Vissers, 2014).
Biotin plays a major role as a coenzyme in carboxylases

intervening in fatty acid synthesis, sugar, and amino acid
metabolisms (Streit & Entcheva, 2003). Saccharomyces
cerevisiae presents several biotin-dependent enzymatic
activities, including cytosolic, mitochondrial acetyl-CoA,
and pyruvate carboxylases (Hoja et al., 2004; Morris
et al., 1987; Wakil et al., 1958). As such, six carboxykinase
reactions have been identified as biotin-dependent pro-
cesses, including the binding of bicarbonate to acetyl-CoA
through the activity of the acetyl-CoA carboxylase. This
reaction, leading to the formation of malonyl-CoA, is the
first committed step in fatty acid biosynthesis, therefore
asserting the essential role played by biotin in those
metabolic pathways. Among the other biotin-dependent
carboxylases, urea carboxylase is a necessary enzyme for
the utilization of nitrogen from arginine (Cooper, 1982),
which is a major amino acid in grape musts (Spayd &
Andersen-Bagge, 1996) and acts as a storage form for
nitrogen (Whitney et al., 1973).
Biotin also plays a significant role in the Ehrlich

degradation pathway for amino acids, acting as a coen-
zyme in the decarboxylation step (Müller, 2018), further
asserting the intricate relationship between biotin and
amino acid metabolisms in yeast. As it is involved in the
Ehrlich pathway, biotin also contributes toward influ-
encing the production of higher alcohols by wine-related
yeasts.
In addition, yeast assimilable nitrogen (YAN) and biotin

have been proved to be in interaction, as fermentation
times by yeasts show their interdependence, and as such,
are reduced by raising biotin contents in the presence of
high YAN (Bohlscheid et al., 2007). At high YAN con-
centrations, yeasts are more metabolically active (Back-
hus et al., 2001; Bely et al., 1994; Cantarelli, 1957; Hen-
schke & Jiranek, 1993; O’Connor-Cox et al., 1991), and
would therefore express higher needs for pyruvate car-
boxylase, urea carboxylase, and acetyl-CoA carboxylase,
consequently increasing the demand for biotin to ensure
their production (Bohlscheid et al., 2007).
The principal function of folate coenzymes is to accept

or donate one-carbon unit in key metabolic pathways
(Bailey & Gregory, 1999) that are active in single-carbon
metabolism (Combs & McClung, 2017i), and which inter-
vene in transaminations and in ergosterol synthesis in
yeast metabolism (Jackson, 2008). Folates are required for
the synthesis of both methionine and purines, as well as
for interconversion between serine and glycine, and are
therefore crucial in yeast cellular replication and growth
(Hjortmo et al., 2008). Involved in the conversion between
homocysteine and methionine, folates also allow sulfur
assimilation in yeasts (Boulton et al., 1999).
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Inositol appears to play a significant role in contributing
to the membrane integrity of yeasts (Majerus et al., 1986).
This compound serves as an essential precursor in yeasts,
intervening in the synthesis of phosphatidylinositol, which
acts as a precursor to signaling molecules (Carman &Han,
2011; Henry et al., 2012), and plays a role in the synthesis of
lipids deriving from phosphatidic acid (Henry et al., 2012).
NAD and NADP are the active forms of niacin, and

are metabolically involved in dehydrogenation reactions
(Jackson, 2008). They play a central role in themetabolism
of ethanol, acting as a coenzyme in the conversion of
ethanol to acetaldehyde, that can be further converted
to acetate (Kirkland & Meyer-Ficca, 2018). Accordingly,
acetate accumulation has been proved to be stimulated by
nicotinic acid without affecting the yeast growth rate or
biomass yield (Monk & Cowley, 1984).
In addition, NAD+ and NADP+ are essential redox

cofactors for numerous oxidoreductases (Voet et al., 2006),
and NAD+ acts as a substrate for several enzymes,
including cyclic ADP-ribose synthases and sirtuin pro-
tein deacetylases (Culver et al., 1997; Wierman & Smith,
2014), which are significant in the maintenance and reg-
ulation of chromatin structure, calcium signaling, life
span, and DNA repair (Bürkle, 2005; Chini, 2009; Kato
& Lin, 2014; Lin & Guarente, 2003; Rusche et al., 2003).
NAD+ and NADP+ are both significant compounds for
many oxidation–reduction reactions in yeasts (Kawai et al.,
2001).
Pantothenic acid exists in two different metabolically

active forms, CoA and the acyl-carrier protein, both act-
ing as key compounds in metabolism (Combs &McClung,
2017h). CoA consists of a β-mercaptoethylamine group and
a 3′-phosphoadenosinemoiety bonded to pantothenic acid
residues and functions as a carrier of acetyl and other
acyl groups (Voet et al., 2006). CoA is the source of the
prosthetic group that can be found in numerous proteins
functioning as acyl, aminoacyl, and peptidyl group carriers
(Leonardi & Jackowski, 2007), and is the precursor of sev-
eral major compounds, such asmethionine, whose biosyn-
thesis derives from succinyl-CoA (Primerano & Burns,
1982). Interestingly, methionine itself plays a key role in
the regulation of sulfide production from inorganic sulfur
compounds by yeasts (Wainwright, 1970). As a precursor
for CoA, pantothenate also appears to be highly signifi-
cant in fatty acid metabolism, because the growing fatty
acid chain is elongated by the addition of units derived
from acetyl CoA, and intermediates in fatty acid synthe-
sis are linked to groups belonging to an acyl carrier protein
(Berg et al., 2002). Among the othermetabolic processes in
which CoA intervenes, mention can be made in particular
of the oxidation of ketoacids (Mooney et al., 2002), the tri-
carboxylic acid cycle (Van Winkle, 1985), which is highly
significant in carbohydrate and amino acid metabolisms,

and choline metabolism (Jope & Jenden, 1980), proven to
induce notable changes in yeasts (Ali & Karuppayil, 2018).
Pyridoxine is biologically active through, notably, its

PLP form, which acts as a versatile coenzyme or sub-
strate for more than 50 S. cerevisiae enzymes involved
in amino-acid, glucose, lipid, and thiamine metabolisms
(Perli et al., 2020). The versatility of PLP-dependent
reactions relies on the compound capacity of covalently
binding the substrate, and subsequently acting as an elec-
trophilic catalyst to stabilize an iminium salt structure-
containing carbanionic reaction intermediates (Müller,
2018). As such, PLP notably serves as a coenzyme for
transamination, racemization, and decarboxylation reac-
tions (Koser, 1968) through the formation of a Schiff base
(John, 1995), and intervenes as a cofactor in carbohy-
drate and sulfur metabolism (Koser, 1968). PLP has also
been thoroughly described for its interventions in amino
acid metabolism (Grogan, 1988; Käck et al., 1999; Mihara
et al., 1997; Palm et al., 1990), and especially for its signifi-
cance in the Ehrlich pathway for the degradation of amino
acids (Hazelwood et al., 2008). As such, its impact on
methionine and cysteine metabolisms has been reported,
thus relating pyridoxine to sulfur-containing compounds
metabolisms in yeasts (Müller, 2018). In addition, PLP,
as an effective singlet oxygen quencher, plays an impor-
tant role against photosensitization in fungi (Bilski et al.,
2000), and it has been demonstrated that pyridoxine, as
well as thiamine, is amajor component of yeast respiration
through the activities of heme-containing enzymes (Naka-
mura et al., 1980).
Riboflavin functions as an enzyme cofactor, as well

as a cofactor in metabolic oxidation–reduction reactions
(Combs&McClung, 2017a), playing an essential role in the
intermediary metabolism of carbohydrates, amino acids,
and lipids and in the activation of pyridoxine and folic
acid in their functional forms. It also intervenes in cellu-
lar antioxidant protection by maintaining the glutathione
redox cycle and providing reducing equivalents (Combs
& McClung, 2017d). These functions are handled by the
vitamin through flavoproteins, coenzymes that serve as
switching sites between electrondonors and acceptors, and
therefore acting as highly versatile redox cofactors (Combs
& McClung, 2017d). FAD acts as a cofactor for 84% of
the flavoenzymes, including oxidases and dehydrogenases,
whereas FMN is a cofactor for 16% of them (Combs &
McClung, 2017d). As such, FAD is a cofactor for pyruvate
dehydrogenase (Voet et al., 2006), therefore asserting its
significance in glycolysis and in the TCA cycle.
The most biologically active form of thiamine appears

to be TPP, also known as cocarboxylase, involved in
the conversion of pyruvic acid to carbon dioxide and
acetaldehyde (Trevelyan & Harrison, 1954). Thiamine, in
the form of TPP, is involved as a cofactor in numerous
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TABLE 6 Wine-related yeasts requirements for vitamins: Concentrations of vitamins in grape musts and vitamin requirements for
Saccharomyces cerevisiae

Vitamin requirements (mg/L)
Nature of the
requirement

Vitamin

Contents: orders of
magnitude in grape
musts (mg/L) (see
Table 2)

Growth
(Shinohara
et al., 1996)

Fermentation
(Shinohara
et al., 1996)

Jones et al.
(1981)

Shinohara
et al.
(1996)

Barnett
et al. (1990)

Ascorbic acid 10 to 1000 nd. nd. nd. nd. nd.
Biotin 0.001 to 0.1 0.002 0.020 0.005 to 0.05 ∆ ○

Folic acid 0.001 to 0.1 0.002 0.0015 0.5 to 5 ○ nd.
Inositol 100 to 1000 2 ≥10 – – –
Niacin 0.1 to 1 0.4 0.4 0.1 to 1 – ○

Pantothenic acid 0.1 to 1 0.4 2 0.2 to 2 – ○

Pyridoxine 0.1 to 1 0.4 0.4 0.1 to 1 – ○

Riboflavin 0.1 to 1 0.2 0.2 0.2 to 0.25 – nd.
Thiamine 0.1 to 1 0.4 0.4 0.1 to 1 – ∆

Note: ○ = essential; ∆ = variable; – = no requirement.

enzymes, including pyruvate decarboxylase, pentose phos-
phate pathway transketolase, TCA cycle dehydrogenase,
and 2-oxo-glutarate dehydrogenase (Ericsson et al., 2008).
These TPP-dependent enzymes play major roles in carbo-
hydrate metabolism (Hohmann & Meacock, 1998), with
TPP appearing to be especially significant in pyruvate
metabolism, because it cannot be further degradedwithout
the vitamin (Ericsson et al., 2008; Hohmann & Meacock,
1998). Therefore, the biosynthesis processes for isoleucine
and valine, both resulting from pyruvate, are also depen-
dent on TPP (Hohmann & Meacock, 1998). TPP metabolic
significance has also been demonstrated in the pentose
phosphate pathway, producing precursors for biosynthetic
processes, and in the catabolism of branched chain amino
acids (Hohmann & Meacock, 1998). TPP is, in addition,
essential in the Ehrlich pathway for the degradation of
amino acids, and therefore significantly impacts amino
acid, alcohol, and aldehyde metabolisms in yeasts (Müller,
2014).

4.3 Wine-related yeast requirement for
vitamins

4.3.1 Nature and extent of vitamin
requirements in wine yeasts

Similar to vitamin de novo biosynthesis capacities, S. cere-
visiae requirements for water-soluble vitamins appear to
be controversial and strain dependent (Barnett et al., 1990;
Burkholder, 1943; Shinohara et al., 1996). However, gen-
eral conclusions regarding the existence of requirements
for biotin, folic acid, niacin, pantothenic acid, pyridoxine,

and thiamine can be drawn fromprevious studies (Table 7).
Interestingly, these requirements seem to be covered by
the global contents naturally displayed by grape musts
(Tables 6 and 7), leading to the assumption that, should
punctual deficiencies be avoided, grape musts are optimal
for S. cerevisiae growth and alcoholic fermentation regard-
ing vitamins.
Vitamin contents have been considered as a means

of regulating contaminations by undesirable yeasts, such
as Brettanomyces bruxellensis (Uscanga et al., 2000; Von
Cosmos & Edwards, 2016). However, the great diversity
and many contradictions of the conclusions on yeast
vitamin requirements, associated with both the strain
and the stage of vinification considered, render such
strategies very difficult (Von Cosmos & Edwards, 2016).
myo-Inositol could be considered as a means of prevent-
ing the development of undesirable yeasts such as Bret-
tanomyces anomalus and Hanseniaspora uvarum, because
both species have been described as having a strict require-
ment for it, whereas Saccharomyces cerevisiae would not
be affected by its absence (Table 7); however, the high
inositol contents present in musts can be assumed to nat-
urally cover B. anomalus and H. uvarum, excluding the
vitamin as a means of regulation. The variable require-
ment of S. cerevisiae regarding thiamine (Table 7) could,
however, allow for the establishment of strategies to limit
infections in wine: selecting a thiamine-independent S.
cerevisiae strain would allow winemaking with thiamine-
deficient musts, impairing the development of unwanted
yeasts that exhibit either a strict or variable requirement
toward thiamine, such as B. anomalus, B. bruxellensis,
H. uvarum, or Pichia anomala. However, such strate-
gies should be closely controlled, in order to avoid any
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TABLE 7 Wine-related yeasts requirements for vitamins: Vitamin requirements of the principal grape and wine yeasts according to their
growth response (Barnett et al., 1990) (ascorbic acid, folic acid, riboflavin: Data not found)

Yeast species Biotin myo-Inositol Niacin Pantothenic acid Pyridoxine Thiamine
Brettanomyces anomalus ○ ○ ∆ ∆ – ○

Brettanomyces bruxellensis ∆ – – – – ∆

Candida famata ○ – – – – ○

Candida vini ○ ∆ – – – ○

Hanseniaspora uvarum ∆ ○ ○ ○ ○ ∆

Lachancea thermolerans ○ – – – – –
Metschnikowia pulcherrima – – – – – –
Pichia anomala – – – – – ○

Pichia fermentans ∆ – – – – ∆

Pichia membranifaciens ∆ ∆ – ∆ ∆ ∆

Saccharomyces cerevisiae ○ – ○ ○ ○ ∆

Saccharomycodes ludwigii ∆ ○ ∆ ∆ ∆ ∆

Schizosaccharomyces pombe ∆ ○ ○ ∆ ∆ ∆

Starmerella bacillaris ∆ – – – – –
Zygosaccharomyces bailii ○ – – – – –

Note: ○ = essential; ∆ = variable; – = no requirement.

detrimental effects on wine fermentations due to vitamin
deficiencies.

4.3.2 Impact of vitamin deficiencies on wine
fermentations

Ascorbic acid was not found to be an essential vitamin for
wine yeasts (Ough et al., 1989), and therefore, its deficiency
is not assumed to have any significant effect on fermenta-
tion rates.
Absences of biotin in the extracellular environment of

yeasts cultivated in synthetic medium seem to trigger
decreases in fermentation rates and growth, therefore sug-
gesting the essential character of this vitamin for yeasts
(Ough et al., 1989). Biotin-requiring S. cerevisiae strains
grown in suboptimal concentrations regarding biotin con-
tents have been demonstrated to display alterations in
their fine cell structure, including, notably, polymerization
damage of cytoplasmic and vacuolarmembranes, aswell as
splits along their lipid layer and greater numbers of large
storage granules (Dixon & Rose, 1964). These effects are
associated with the strict requirement for biotin to process
fatty acid biosynthesis, as this compound plays major roles
in maintaining membrane integrity in yeast cells (Wat-
son, 2015). As such, this function might justify the biotin
requirement by wine yeasts, contributing to their capacity
to survive osmotic and ethanol stresses during fermenta-
tions. However, it appears that the low amounts of biotin
present in musts are sufficient to support yeast growth,
because additions to the medium do not have any impact

on fermentation rates (Ough & Kunkee, 1967). It should
also be noted that biotin is the only essential vitamin to
the genus Saccharomyces, although growth is highly stim-
ulated in the presence of other vitamins (Castor & Archer,
1956). Interestingly, biotin depletions in the medium lead
yeasts to synthesize higher contents of niacin, as well as
thiamine and riboflavin, whereas these contents decrease
when yeasts are deficient in pantothenic acid (Ournac,
1970).
Inositol requirements and effects appear to be highly

related to the presence of other vitamins in the growth
media, because its effects are practically nonexistent when
the compound is added by itself, but becomes a limiting
factor for growth when other growth factors are supplied
(Williams, 1941). However, it appears that the elimina-
tion of inositol from the growth medium tends to result
in decreased fermentation rates and cell viabilities in S.
cerevisiae strains (Ough et al., 1989), although no specific
study on wine fermentations has been performed so far. A
positive effect of inositol on yeasts has been observed in
conditions of low temperatures, in relation to yeast mem-
brane rigidification in response to the cold (Patton-Vogt &
Henry, 1998): in limited inositol conditions, no reshaping of
the membrane lipid composition appears to occur (López-
Malo et al., 2015), therefore potentially affecting cell sur-
vival. In addition, low levels of inositol have been found
to result in elevated formations of succinic acid (Boulton
et al., 1999).
Absences of exogenous pantothenic acid were proved to

result in a decrease of fermentation rates and cell viabilities
of S. cerevisiae strains (Ough et al., 1989), and pantothenic
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acid-deficient cells appear to be associated with lower oxy-
gen uptakes (Hosono et al., 1972). In addition, deficien-
cies in pantothenic acid result in a significant accumula-
tion of hydrogen sulfide (Hosono et al., 1972), a compound
that tends to form reductive off-flavors in wine. Concen-
trations in higher alcohols and lipid metabolism in S. cere-
visiae also appear to be affected by pantothenic acid depri-
vations (Wang et al., 2003), because the compound is a
precursor in the synthesis of acetyl-CoA, itself interven-
ing in higher alcohols and fatty acids biosynthesis (Combs
& McClung, 2017h). The decrease in fatty acid synthesis
resulting from a deficiency in pantothenic acid could lead
to a risk of damaging yeast cell membranes, mostly formed
by phospholipids (Watson, 2015), and therefore, jeopar-
dizing cell survival. In addition, it has been shown that
pantothenic acid triggers yeast cell death when present
in growth-restricting amounts in a nitrogen-rich medium
(Duc et al., 2017); therefore, the amounts of assimilable
nitrogen present in the cultivation medium could lead to
a modulation of losses in cell viability when in conditions
of pantothenic acid deprivation.
It has been demonstrated that additions of pyridoxine in

cultivation media increased fermentation rates and yeast
growth in S. cerevisiae strains, regardless of the nitrogen
content in the medium, thereby proving the effect played
by pyridoxine on growth and fermentation kinetics (Xing,
2007). In addition, it has been reported that pyridoxine
may impact hydrogen sulfide (H2S) production, because
the depletion of pyridoxine tends to lead to low H2S levels
(Xing, 2007). However, it should be noted that B vitamins
thiamine and pyridoxine both serve as coenzymes in yeast
metabolism during fermentation (Trevelyan & Harrison,
1954), and can assist each other during their respective
syntheses (Chiao & Peterson, 1956), therefore ensuring
normal yeast growth if the cultivation medium is deficient
in one of either vitamin. In addition, thiamine and pyri-
doxine appear to interact, the result of which has an effect
on yeast metabolism, such as yeast growth inhibition in
pyridoxine-free media when supplied with additional
thiamine, solved by the addition of pyridoxine (Chiao &
Peterson, 1956).
Riboflavin is not considered a growth factor for Saccha-

romyces yeasts, because many species of the genus syn-
thetize most of the quantities observed in the medium
(Ournac, 1970). However, the vitamin has been demon-
strated to catalyze the degradation of sulfur-containing
amino acids upon activation by light (Jackson, 2008), sig-
nificantly affecting their availability for wine yeasts.
Thiamine has been proved to be essential to ferment-

ing yeasts, because a lack of exogenous thiamine in the
cultivation medium tends to lead to sluggish or stuck
fermentations, and this phenomenon is heightened in
the presence of high assimilable nitrogen concentrations

(Bataillon et al., 1996). Under thiamine-depleted condi-
tions, it has been shown that thiamine synthesis-related
proteins Thi4 and Thi5 are among the most abundant pro-
teins in S. cerevisiae (Muller et al., 1999), acting as sui-
cide enzymes in order to maintain thiamine levels, and
therefore highlighting the metabolic focus given to thi-
amine synthesis in such limiting conditions. Thiamine
serves as an activator for fermentation, improving cell
growth and fermentation rates (Bataillon et al., 1996;
Laser, 1941; Trevelyan & Harrison, 1954). Thiamine addi-
tion indeed has been proved to decrease pyruvate accu-
mulation (Trevelyan & Harrison, 1954), therefore trans-
lating an increase in the conversion of pyruvate toward
ethanol, which implies an increase in the fermentation
rate. In addition, low levels of thiamine have been proved
to affect yeast metabolism rates at low temperatures, and
during lag phases, in particular, because the lowmetabolic
rates due to low temperatures result in reduced uptakes,
and therefore, in longer lag phases (Ferreira et al., 2017).
Thiamine appears to affect the synthesis of other com-
pounds during fermentation processes. For instance, it has
been proved to reduce the concentrations in carbonyl com-
pounds, because TPP, standing as an Mg3+ ternary com-
plex in enzymes, is able to react as an ylid attacking car-
bonyl functions (Zempleni et al., 2006), therefore con-
tributing in the decarboxylation of ketonic acids, such as
pyruvic acid and α-ketoglutaric acid (Lafon-Lafourcade,
1983). Such carbonyl compounds bind to sulfur dioxide
(SO2) (Tuite & Oliver, 1991), thereby rendering SO2 more
available in the media, leading to the enhanced con-
trol of spoilage organisms (Jackson, 2008). In addition,
thiamine serves as a coenzyme in sulfite and sulphate
reductions, affecting H2S formation (Eschenbruch, 1974;
Wainwright, 1971). The concentrations and relative pro-
portions of higher alcohols produced during fermentation
also appear to be reduced by the vitamin (Jackson, 2008).
Finally, thiamine was proved to increase the resistance of
S. cerevisiae against oxidative, osmotic, and thermal stress
through the maintenance of redox balance in yeast cells,
partly independently of the functions of TPP-dependent
enzymes (Wolak et al., 2014).

5 IMPACT OF VITAMINS ONWINE
SENSORY PROPERTIES

5.1 Aromas

Vitamins intervene in several metabolisms, including
those of significant aroma precursors or aromatic com-
pounds, and therefore have indirect effects on the develop-
ment of wine aroma profiles, contributing to the synthesis
of several flavor-significant molecule families.
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5.1.1 Thiamine

Thiamine, as a major cofactor in several metabolisms,
intervenes in the synthesis and evolution of several pre-
dominant aromatic compounds. As such, it has been
demonstrated that the wine yeast production of acetic
acid, a highly significant compound regarding the wine
aroma profile, is stimulated dosage dependently by addi-
tions of the vitamin (Eglinton & Henschke, 1993; Hanne-
mann, 1985). Because this compound is the major compo-
nent contributing to volatile acidity (Fowles, 1992), and at
high concentrations, liable to significantly impair wine by
conferring it a vinegar-like character (Swiegers et al., 2005),
it is of the utmost importance to control its content in
wine in order to maintain a balance between the freshness
provided by acidity, and the negative impact that excessive
concentrations may have on flavors.
Such an effect by thiamine on acetic acid production

also implies a redirection of pyruvate carbon away from
succinic acid metabolic pathways, and therefore sug-
gests an impact by vitamins on the TCA cycle and the
aromatically significant compounds involved in it. Five
vitamin-derived cofactors are involved in the TCA cycle,
required for the reactions related to the entrance of pyruvic
acid and glutamate into the cycle (Coulter et al., 2004),
some notably resulting from thiamine (Lehninger et al.,
2005), proving the effect of this vitamin on the biosyn-
thesis of TCA cycle compounds, including succinic acid.
Accordingly, additions of thiamine in synthetic media
have been demonstrated to increase contents of succinic
acid (Ribéreau-Gayon et al., 1956). Succinic acid, which
contributes to wine titratable acidity, has been reported as
the main nonvolatile carboxylic acid produced by yeasts
during wine fermentations (Radler, 1993) and has been
described as having anunusual taste, characterized by both
salty and bitter descriptors (Whiting, 1976). It has also been
established that succinic acid contributes to the vinosity
character of wine, and to the characteristic taste of all fer-
mented beverages (Peynaud, 1984). It can be assumed, in
addition, that, by having an effect on succinic acid contents
in wine, thiamine is susceptible to have a similar effect on
concentrations of succinate-derived aromatic compounds,
such as diethyl succinate, which occurs naturally in
grapes, bringing fruity melon notes to wine (Lasik-Kurdys
et al., 2018).
As with the effect of thiamine on succinate contents

through its impact on the TCA cycle, it is highly possible
that the vitamin has a comparable influence on citrate con-
centrations in wine, most probably also heightening them
when thiamine contents increase. Citrate has been shown
to have several effects on wine aromas; its degradation
by wine acid lactic bacteria does indeed lead to increases

in wine volatile acidity, although the concentrations con-
cerned do not impair wine quality (Belda et al., 2017). Cit-
rate fermentation, in addition, leads to the production of
diacetyl, which is responsible for buttery aromas in wine
(Belda et al., 2017).
One of the primary roles of thiamine in metabolism

appears in its involvement in the Ehrlich pathway for
the degradation of amino acids, in which TPP acts as an
essential cofactor to ensure the decarboxylation reaction
(Müller, 2014), from an α-ketoacid toward a fusel alde-
hyde, that can be further reduced to the associated higher
alcohol (Hazelwood et al., 2008). Higher alcohols, also
called fusel alcohols, are significant components of the fla-
vor and aroma of alcoholic fermented beverages (Suoma-
lainen, 1971; Suomalainen & Lehtonen, 1979), and have
both positive and negative impacts on wine taste (Swiegers
et al., 2005). Moderate concentrations of such compounds
have been established as contributing to wine complex-
ity and excessive contents are regarded as a negative qual-
ity factor (Rapp & Mandery, 1986), possibly resulting in
strong and pungent flavors, whereas optimal levels would
rather lead to fruity characters (Lambrechts & Pretorius,
2000; Nykanen et al., 1977; Swiegers & Pretorius, 2005).
Among those higher alcohols, isobutanol, isoleucine 2-
methylbutanol, and leucine isoamyl alcohol, in particular,
have been proved to have a negative impact on wine taste
(Müller, 2014, 2018). It should also be noted that further
esterification of higher alcohols with carboxylic acid leads
to more pleasant aromas, such as isoamyl acetate, charac-
terized by banana flavors (Müller, 2014, 2018).
In addition, it is interesting to note that TPP deficien-

cies have been proved to lead to the development of
off-flavors in wine, because the build-up of phospho-
enolpyruvate and ketocarboxylic acids resulting from the
impossibility to conduct the TPP-dependent decarboxyla-
tion leads to evasive reactions and to their subsequent off-
flavor by-products (Müller, 2014).
Also resulting from amino acid degradation, 2-

aminoacetophenone is the compound responsible for
the atypical age tone wine defect, associated with moth
powder or naphthalene descriptors, resulting from trypto-
phan metabolism, in which thiamine is therefore essential
(Müller, 2014).
Interestingly, thiamine-dependent carboligases also sig-

nificantly intervene in the biosynthesis of aroma precur-
sors during lactic acid fermentations, leading to the forma-
tion of compounds such as diacetyl or acetoin, the latter
being responsible for the further synthesis of a 3-hydroxy-
4-phenylbutan-2-one compound through its condensation.
Interestingly, this molecule appears to be characteristic of
Riesling wines, and is associated with strong floral smells
(Müller, 2014).
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5.1.2 Riboflavin

Riboflavin contributes to the occasional genesis of sul-
fide off-flavors in bottled wines. The vitamin indeed cat-
alyzes the degradation of sulfur-containing amino acids
when photoactivated, and therefore leads to the formation
of free radicals that are susceptible to combining to form
methanethiol and dimethyl disulfide, as well as hydrogen
sulfide (Jackson, 2008), respectively, described as cooked
cabbage and reduced tastes, corn andmolasses, and finally,
rotten egg (Fracassetti & Vigentini, 2018).
These compounds lead to the development of the light-

struck (goût de lumière) fault in champagne, induced by
radiation corresponding to the peaks of the absorption
spectrum in riboflavin (440 and 370 nm); therefore, wines
with high riboflavin contents are at a higher risk of devel-
oping the goût de lumière aftertaste (Jackson, 2008).

5.1.3 Niacin, pantothenic acid, and biotin

Interestingly, the effects of thiamine on acetic acid, suc-
cinic acid, and citric acid contents in wines are very similar
to those induced by niacin, pantothenic acid, and biotin.
Niacin indeed leads to dosage-dependent stimulations of
acetic acid production when added to the yeast growth
medium (Monk & Cowley, 1984) during fermentation, and
is involved in succinic acid metabolism.
Similarly, additions of pantothenic acid and biotin to

yeast growth media have been proved to lead to increased
contents of succinic acid (Ribéreau-Gayon et al., 1956),
in accordance with the metabolic requirement for pan-
tothenic acid-derived and biotin-derived cofactors in order
to process the TCA cycle (Coulter et al., 2004; Lehninger
et al., 2005; Schwartz & Radler, 1988).
As such, it can be assumed that both vitamins are sus-

ceptible to possessing an impact similar to that of thiamine
on wine regarding acetic acid, succinic acid, and citric
acid concentrations, most likely contributing to heighten-
ing themwhen added to grapemusts, and therefore, acting
as significant agents regarding wine acidity.
It is also interesting to note that biotin, acting as a cofac-

tor in the decarboxylation step of the Ehrlich pathway
alongside thiamine (Müller, 2014), is also a significant com-
pound regarding the formation of the subsequent aromatic
molecules.

5.1.4 Pyridoxine

The Ehrlich pathway for the degradation of amino acids
requires, in addition to TPP to process its decarboxyla-
tion reaction, the presence of pyridoxine in order to occur,

therefore asserting the major role played by the vitamin
in the development of aromatic compounds. The Ehrlich
pathway transamination reaction, converting an amino
acid to the corresponding α-ketoacid, requires PLP as a
cofactor (Müller, 2018), establishing the significance of
pyridoxine in the development of unpleasant aromatic
compounds α-ketoacids and fusel alcohols. As such, pyri-
doxine is also involved in the genesis of the atypical
age tone wine defect, resulting from the formation of 2-
aminoacetophenone (Müller, 2018).
Interestingly, cysteine and methionine metabolisms,

which are the major contributors to the development of
volatile sulfur compounds, are almost exclusively related
to PLP-dependent enzymes (Müller, 2018), therefore show-
ing the predominant impact of the vitamin on the devel-
opment of these off-flavor-causing molecules. Among the
other sulfur-containing compounds synthetized through
the Ehrlich degradation of cysteine and methionine, it is
interesting to cite methanethiol and dimethyl sulfide, as
well as ethanethiol (Müller, 2018), the latter being com-
monly described in olfactory terms as onion, rubber, and
putrefaction (Fracassetti & Vigentini, 2018).
More globally, the formation of aromatic thiols is highly

influenced by pyridoxine, through the β-lyase activity of
PLP-dependent enzymes (Müller, 2018). Such compounds
have been proved to contribute in a concentration-
correlated way to the positive aroma of certain varieties,
such as Sauvignon blanc, and are mostly characterized by
pleasant tropical fruit descriptors. However, any excess
of these molecules leads to negative impacts on wine
taste, which is then often described as having “cat urine”
aromas (Müller, 2018). It is also interesting to note that the
Ehrlich degradation of methionine leads to the synthesis
of S-adenosyl methionine, which directly contributes to
the vegetative aroma profile of wines, and is a notable
component, in addition to the contribution of thiol, of
the character of the Sauvignon blanc variety (Müller,
2018).

5.1.5 Ascorbic acid

In the presence of oxygen, the oxidation of ascorbic acid
leads to the formation of hydrogen peroxide, a compound
characterized by strong oxidant properties and suscepti-
bility to highly altering wine composition (Elias & Water-
house, 2010; Laurie & Waterhouse, 2006; Ribéreau-Gayon
et al., 2006). Among such effects, in particular, its interac-
tion with SO2 has been reported, as free SO2 is preferen-
tially oxidized by hydrogen peroxide to form sulfuric acid
(Ribéreau-Gayon et al., 2006). In addition to reducing the
amounts of hydrogen peroxide present in wines, SO2 is a
compound that contributes diversely to the development
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of aromas in wine by combining with different substances
(Giacosa et al., 2019).
Ascorbic acid additions to wine during bottling were

shown to have little impact on wine aroma and flavor
during the first 6 months of aging, whereas for storage
durations longer than 3 years, such additions led to wines
presenting either no difference in aroma or with less
oxidized and more fresh fruity aromas (Skouroumounis
et al., 2005). In addition, concentrations of damascenone,
a compound that has been associated with descriptors
such as “fruity-flowery,” “woody,” “honey-like,” “apple,”
and “baked apple” (Aznar et al., 2001; Ferreira et al.,
2002; Kotseridis & Baumes, 2000; Kotseridis et al., 1998;
Kováts, 1987), appear to be similar, or slightly lower in
wines to which acid ascorbic was added (Skouroumounis
et al., 2005). Therefore, ascorbic acid could contribute
toward modulating such fruity aromas during white wine
aging.

5.2 Color

The antioxidant role exerted by ascorbic acid on the brown-
ing of wines has been extensively studied, and although
it was initially concluded that ascorbic acid additions to
wines could promote white browning (Bradshaw et al.,
2001), it has since been established that ascorbic acid-
induced browning is not necessarily accompanied by oxi-
dized aromas and flavors (Peng et al., 1998). Such changes
in white wine color as a consequence of oxidation have
been theorized as resulting from reactions between the
phenolic compounds in wine and oxygen. As such, yel-
low xanthylium salts formed from catechin are assumed to
contribute to the color of aged white wines (Es-Safi et al.,
2003). In addition, it has been demonstrated that Chardon-
nay wines with ascorbic acid additions are generally per-
ceived as less brown than the corresponding ones with-
out such additions (Skouroumounis et al., 2005), whereas
Riesling wines do not present any significant difference
related to ascorbic acid additions, although they are gen-
erally recognized as higher in yellow hue (Skouroumou-
nis et al., 2005). More generally, it is assumed that ascorbic
acid might reduce the perceived brownness of wine both
by concomitantly increasing yellowness (Skouroumounis
et al., 2005) and diminishing phenolic pinking (Simpson
et al., 1983). In addition, ascorbic acid possesses the abil-
ity to complex iron to maintain it in its divalent state
(Combs & McClung, 2017b), which contributes to pre-
venting ferric casse in wines (Fowles, 1992). Indeed, the
oxidation–reduction system formed by ascorbic acid and
dehydroascorbic acid leads to the formation of two elec-
trons during ascorbic acid oxidation to dehydroascorbic
acid. The two electrons formed during the course of the

reaction are able to subsequently reduce certain wine con-
stituents, including ferric iron.
Such an oxidation to the ferric state can result in the

formation of a blue casse in red wines through the forma-
tion of insoluble particles when ferric ions combine with
the anthocyanins and tannins that can be found in wines
(Jackson, 2008). Because it allows the formation of elec-
trons that can successfully reduce ferric iron to its ferrous
state, ascorbic acid therefore acts as an efficient agent for
preventing the ferric casse wine default.
The potential effect that nicotinate and nicotinamide

have on wine color could also be considered; both
compounds can, through a succession of metabolism
reactions, lead to the formation of a blue pigment, which
appears in the form of diazodiphenoquinone in acidic
media (Kanehisa & Goto, 2000; National Center for
Biotechnology Information, 2020). Although the presence
of such a compound in grape musts and wine samples has
not been investigated, it cannot be excluded that it may be
found in these products, and that it may make a tenuous
contribution to wine color. Because diazodiphenoquinone
is related to niacin compounds through metabolism,
it can be conjectured that high concentrations of nico-
tinic acid or nicotinamide may contribute to modulat-
ing wine color through the formation of such a blue
pigment.
Riboflavin is a yellow pigment that is relatively stable

in white wines that are stored in dark conditions and at
elevated temperatures, but undergoes rapid degradation
when exposed to light (Dias et al., 2012; Perlman&Morgan,
1945). It can therefore be assumed that, as a pigment, this
vitamin can contribute towhitewine color and to its degree
of yellowness. In addition, riboflavin has been found to
possibly act as a protective agent, preventing or mini-
mizing the development of catechin-type phenolic-derived
pigments that are formed when white wine is exposed to
short wavelength radiation, and only allows pigmentation
when entirely broken down in wine (Dias et al., 2010).
Pigmentation observed subsequent to riboflavin degrada-
tion has been theorized to be a degradation product of the
vitamin rather than a phenolic-based pigment (Dias et al.,
2010). Thus, riboflavin has been shown to undergo several
reactions when exposed to light, resulting in photoprod-
ucts that contribute to pigmentation development in wine
(Dias et al., 2012).
It is interesting to note that combined light and

riboflavin treatment applied to Vitis coignetiea antho-
cyanins led to the production of singlet oxygen that sig-
nificantly increased their degradation (Kim et al., 2010).
Although the species on which the study was performed
was different from the Vitis sp. varieties that are most
commonly employed for wine production in occidental
countries (e.g. Vitis vinifera), the wild V. coignetiea fruit is
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similar to grape, and it could be envisioned that such a
comparable effect exists in V. vinifera products, and there-
fore affects wine color.

6 VITAMIN ANALYSIS IN GRAPE
MUSTS ANDWINES

Because vitamins are highly significant compounds
regarding yeast metabolisms and their subsequent impact
on winemaking, methods for analyzing them in grape
musts and wines have been developed over the years
depending on the technologies existing at each time.
Such techniques have evolved over time to provide more
sensitive and robust analyses, formulated for a wide
range of food matrixes to implement diverse modes of
quantification. However, reflecting the lack of studies
focusing on vitamins in grape must and wine media in
recent years, only a few solutions exist to perform vitamin
analysis in such matrixes, highlighting the limited num-
ber of strategies capable of evaluating the significance of
vitamins in oenology and winemaking.

6.1 Vitamin extraction from grape must
and wine matrixes

Assessment of total vitamin contents requires an extrac-
tion procedure capable of releasing the bound forms of
the vitamin for forward analysis and quantification (Ball,
1994a). Therefore, the method must be efficient enough
to break the bonds between the vitamin and other com-
pounds, such as proteins, carbohydrates, or esters, with-
out thermally or chemically impairing the molecule in the
process (Ball, 1994a). Such an extraction is often performed
through procedures involving acid or enzymatic hydroly-
sis steps, should the vitamin be unstable under acidic con-
ditions. Extraction methods are usually specific for each
vitamin and designed to ensure its stabilization; however,
some procedures are applicable to carry out the simultane-
ous extraction of several vitamins (Chang & Zhang, 2017).
Acid hydrolysis in an autoclave leads to protein denat-
uration and starch hydrolysis toward soluble sugars, as
well as dephosphorylation of the bound forms of specific
vitamins, such as pyridoxine, to their free vitamer forms
(Ball, 1994a). Alternate hydrolysis steps relying on enzy-
matic digestions can be performed to release vitamins from
their phosphorylated forms, and to release bound forms of
acidic or alkaline sensible vitamins (Ball, 1994a). Takadi-
astase or other diastatic enzyme preparations have been
suggested as means to conduct the enzymatic hydroly-
sis step, because they contain phosphatase activity and
α-amylase (Ball, 1994a). Overnight incubations are often

recommended for complete hydrolysis by takadiastase
(Lumley, 1993).
As such, procedures recommended for vitamin extrac-

tion rely on the use of both hot acid digestion and enzy-
matic hydrolysis for thiamine, riboflavin, pyridoxine, and
biotin (Ball, 1994a; Chang & Zhang, 2017)—hot acidic
treatment appears to suffice to perform niacin extrac-
tion (Ball, 1994a), whereas pantothenic acid and folic
acid can be thoroughly extracted using enzymatic diges-
tions (Ball, 1994a). Ascorbic acid, however, appears to
require acids such as metaphosphoric acid, oxalic acid,
or acetic acid (Ball, 1994a; Chang & Zhang, 2017) in
order to stabilize and avoid its oxidation toward dehy-
droascorbic acid by inactivating enzyme ascorbic acid
oxidase.

6.2 Assays for the determination of
vitamins in grape musts and wines

Numerous techniques can be used to analyze the water-
soluble vitamin contents in grape musts and wine prod-
ucts, ranging from microbiological to chemical assays,
leading to either only the asynchronous determination
of different vitamins or simultaneous determinations
(Table 8).

6.2.1 Biological and chemical determination

Microbial assays
Microbiological assays for the determination of vitamins
rely on the specific growth requirements of selected
microorganisms, which are usually lactic acid bacteria, as
their growth presents the advantage of being easily mon-
itored using turbidimetry, optical density assays, or lactic
acid titration (Lumley, 1993). Microbial assays rely on the
addition of a dilution series of the sample extract to a basal
medium designed to fulfill all the test organism growth
requirements, except the vitamin of interest. After inocu-
lation with the test organism and incubation, growth will
occur in proportion to the vitamin content of the sample
extract, allowing precise quantification by using vitamin
standards (Lumley, 1993). When growth has reached its
maximum, set by the limitations in the vitamin of inter-
est, the growth response is measured photometrically or
by monitoring the metabolic products, using an appropri-
ate assay method (Ball, 1994b), for example, turbidity or
acidity.

Acid titrations
Water-soluble vitamins such as pantothenic acid or ascor-
bic acid present chemical properties that allow for redox
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TABLE 8 Assays for the determination of water-soluble vitamins in must and wine samples

Assay Type Analysis LOD Notes References
MA Biological Asynchronous – Poor precision and

accuracy
Johnson, 1946; Zhang et al., 2018

Acid titration Chemical Asynchronous 2.0 mg/L Requires an acid group
in the vitamin

AOAC, 1968; da Silva et al., 2017

Spectrophotometry Physical Asynchronous 0.5 mg/L Possible interferences
with color

da Silva et al., 2017

HPLC–UV Chromatography Simultaneous 0.06 to 5.85 µg/L – Panagopoulou et al., 2019;
Sasaki et al., 2020

HPLC–
fluorescence

Chromatography Simultaneous 0.6 to 61 µg/L Direct analysis only for
B1, B2, and B6

Gliszczyńska-Świgło & Rybicka,
2015; Hucker et al., 2011

UPLC–TQMS Chromatography Simultaneous 0.005 to 0.03 µg/L Matrix effects Lu et al., 2008; Zhang et al., 2018
GC–EI–MS Chromatography Simultaneous 2.00 to 500 µg/L Biotin not compatible Deutsch & Kolhouse, 1993;

Nùñez-Vergara et al., 2001
GC-FID–MS Chromatography Simultaneous 2 µg/L to 5 mg/L Biotin not compatible Lin et al., 2000; Tanaka et al.,

1989
HPTLC Chromatography Simultaneous 4.081 to

21.049 mg/spot
– Urgessa, 2008

CE–MS–MS Electrophoresis Simultaneous 0.01 to 0.19 mg/L Requires adaptations
regarding acidity
and ethanol contents

Coelho et al., 2016; do Lago &
Cieslarová, 2018

CZE Electrophoresis Simultaneous 0 to 5 µg/L Requires the use of LID
detectors for
sufficient sensitivity.

Cataldi, Nardiello, De
Benedetto, et al., 2002;
Cataldi, Nardiello, Scrano,
et al., 2002

MEKC Electrophoresis Simultaneous 0.1 to 1.20 mg/L – Gadzala-Kopciuch et al., 2003
MEEKC Electrophoresis Simultaneous 0.2 to 12 µg/mL – Aurora-Prado et al., 2010; Yin

et al., 2008
Biosensors Diverse Diverse – Extremely variable

detection capacities
due to high
variability in
biosensors

Caelen et al., 2004; Lowe, 1984

Immunoassays Biological Asynchronous 0.02 to 7.84 µg/L Not extraction required Ravi & Venkatesh, 2017; Zeng
et al., 2018; Zhang et al., 2018

Abbreviations: HPTLC, high-performance-thin layer chromatography; CZE, capillary zone electrophoresis; UPLC–TQMS: ultraperformance liquid chromatogra-
phy coupled with tandem quadrupole mass spectrometry; GC–EI–MS, GC coupled with electron ionization mass spectrometry; GC–FID–MS, GC coupled with
flame ionization detection mass spectrometry; MEEKC, microemulsion electrokinetic chromatography; MEKC, micellar electrokinetic chromatography.

titration in the medium, thereby permitting the quantita-
tion of the compound. Methods have been developed for
both vitamins (Argade & Pande, 2016; Karabagias et al.,
2020; Ma et al., 2020; Zook et al., 1956). However, such
methods lead only to the determination of individual vita-
mins and do not render any simultaneous determination
of all the vitamins present possible.

6.2.2 Chromatography-based methods

High-performance liquid chromatography
Because water-soluble vitamins are nonvolatile and
hydrophilic, the most extensively used methods for their

determination are reversed-phase (RP) high-performance
liquid chromatography (HPLC) procedures, relying on
a C18 column and aqueous-organic phases in acidic
media, to obtain the simultaneous determination of all the
vitamins in one injection, with the exception of cobalamin
(Amidzic et al., 2005). However, ion-exchange HPLC
also appears to be used occasionally to perform vitamin
analysis (Nollet, 2000). HPLC presents the advantage of
separating the vitamins from interfering compounds that
are inherent in complex foodmatrixes, such as wine, while
also providing increased speed of analysis, precision, and
allowing for the simultaneous quantitation of several
vitamins (Nollet, 2000). However, detection sensitivity
often appears to be an issue regarding vitamin analysis in
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food matrixes, because their contents may occur in trace
quantities. Therefore, ultraviolet absorbance appears to
be a commonly employed detection method, whereas flu-
orescence and electrochemical detection are specifically
used when physicochemical properties permit, and when
increased sensitivity and selectivity are desired (Nollet,
2000).
The simultaneous separation and determination of

water-soluble vitamins in wine matrixes is achieved
through methods that have been developed to assess two
to four vitamins together, with some procedures requiring
successive chromatographic runs on the same column to
perform the separation, although this can be avoided by
connecting several detectors in series (Rizzolo & Polesello,
1992). Ion-paired RP chromatography has been exten-
sively used, relying on several mobile phases and counter
ions. End-capped columns have been demonstrated to
provide more efficient vitamin separation, as well as more
precise peak shapes (Akiyama et al., 1990; Rizzolo et al.,
1991).
The speed of the analysis can be increased through

the use of high temperature or ultrahigh-pressure sys-
tems; however, some vitamins present significant insta-
bility under high temperatures, thus making it necessary
to avoid the use of high-column-temperature methods
(Zhang et al., 2018).
Methanol–water and acetonitrile–water appear to be the

most commonly used mobile phases, modified with acids,
such as acetic, formic, or acetate acid (Zhang et al., 2018).
In addition, HPLC analysis of vitamins is often performed
by applying an elution gradient (Zhang et al., 2018).
HPLC combinedwithmass spectrometry (MS) is also an

efficient mean of analysis. Indeed, HPLC–MS/MS, which
can be considered as a confirmatory method, has become
the main technique used to perform vitamin identifi-
cation, because it presents higher selectivity and sensi-
tivity than other methods (Zhang et al., 2018). HPLC–
MS/MS analysis of vitamins is most frequently performed
using electrospray ionization, the source being operated
in positive ionization mode (Zhang et al., 2018). How-
ever, this method presents the drawback of exhibiting sig-
nificant matrix effects that compromise its quantitative
accuracy and selectivity (Zhang et al., 2018). High con-
tents of organic compounds displayed by wine matrixes in
this case would compete with the analytes, affecting their
maximum evaporation efficiency and ionization (Zhang
et al., 2018). Therefore, matrix effects should be taken
into account before performing HPLC–MS/MS analysis of
vitamins in wine samples, in order to adapt the method
accurately.
Methods developed for vitamin analysis through HPLC

procedures are described in Table 9.

Gas chromatography
Contrary to the HPLC-based method, although highly
sensitive, gas chromatography (GC) analysis of water-
soluble vitamins is used only infrequently (Eitenmiller
et al., 2007). Most of the techniques developed to per-
form such analyses allow only the specific quantitation of
a vitamin alone, and very few methods can be used for
the concurrent determination of several vitamins. Indeed,
GC is mainly used in the separation of small amounts
of analytes. In addition, GC presents, with regard to
grape musts and wines, the disadvantage of not allow-
ing biotin analysis, because the molecule is polar (Das-
gupta, 2019). It must therefore be taken into account that
simultaneous analysis of vitamin contents in grape prod-
ucts in studies including biotin cannot be done with GC
methods.
Thiamine is a heat-sensitive and nonvolatile compound,

and therefore cannot be directly analyzed using GC tech-
niques, which require indirect methods that involve sulfite
pretreatments to split thiamine (Rizzolo & Polesello, 1992).
In comparison, direct nicotinamide determination by GC
using flame ionization detector appears possible, though it
lacks sensitivity (Rizzolo & Polesello, 1992).

High-performance thin-layer chromatography
High-performance thin-layer chromatography presents
the advantage of relatively low consumption of the mobile
phase per sample basis, therefore saving analysis cost and
time (Panahi et al., 2008). It also allows for the simulta-
neous assay of several compounds in a complex matrix
(Kulkarni & Amin, 2000), thus proving very interesting
for the analysis of vitamins in grape products. In addition,
thin-layer chromatography methods have been proved to
be efficient for the analysis of hydrophilic vitamins in bio-
logical samples containing large amounts of nonvitamin
materials (Ponder et al., 2004).

6.2.3 Other methods

Spectroscopy-based methods
Infrared spectroscopy, comprising both the near-infrared
(NIR) and mid-infrared (MIR) regions of the electromag-
netic spectrum, has been proved efficient in characteriz-
ing food composition, by offering precise, rapid, and non-
destructive quantifications (Magwaza et al., 2012, 2014) of
compounds containing polar functional groups (Blanco
& Villarroya, 2002; Nicolaï et al., 2007; Obsorne et al.,
1993), and, therefore, stands as suitable for analysis of
water-soluble vitamins in grape products. As such, infrared
spectroscopy methods have been used to process simul-
taneous determination of several B-groups vitamins in
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various matrixes (Wojciechowski et al., 1998; Xiao et al.,
2012). Similarly, the technique has allowed for precise
quantification of ascorbic acid contents in several fruits
and fruit juices (Alamar et al., 2016; Andrianjaka-Camps
et al., 2015; Arendse et al., 2018; Blanco-Díaz et al., 2014;
Liu et al., 2015; Yang & Irudayaraj, 2002), and therefore,
appears promising for extension toward the grape must
and wine matrixes. Such an analysis could either be per-
formed in the NIR–visible region of the spectrum, at wave-
lengths between 400 and 2500 nm (Alamar et al., 2016;
Blanco-Díaz et al., 2014; Caramês et al., 2017; Liu et al.,
2015), or atMIRwavelengths, comprised between 2000 and
10,800 nm (Andrianjaka-Camps et al., 2015; Arendse et al.,
2018).

Electrophoresis-based separation
Capillary electrophoresis (CE) techniques are efficient
quantitative methods used for the analysis of vita-
mins (Aurora-Prado et al., 2010; Cataldi, Nardiello, De
Benedetto, et al., 2002; Cataldi, Nardiello, Scrano, et al.,
2002; da Silva et al., 2013; Marshall et al., 1995; Sánchez &
Salvadó, 2002; Ward et al., 1997; Yin et al., 2008), mainly
used in the case of limited available amounts of samples.
These methods have proved to be fast and low solvent con-
suming, and in which separation is performed according
to compound sizes and charges (Zhang et al., 2018). CE
methods are electrodriven separation procedures using a
buffer to separate charged or neutral compounds, relying
on their electrophoretic mobility and hydrophobicity (Yin
et al., 2008). Water-soluble vitamins, such as B or C group,
which can be found in grape and in wine products, pos-
sess an acidic function that allows their separation using
capillary zone electrophoresis (Fotsing et al., 1997), micel-
lar electrokinetic chromatography (Ong et al., 1991), and
microemulsion electrokinetic chromatography (Yin et al.,
2008).
Because wine is a complex matrix, characterized by

a direct acidic and ethanolic constitution, it requires
the adaptation of CE methods to ensure their efficiency,
whereasmodifications of ethanol contents are not required
for grape-derived samples such as musts (Coelho et al.,
2016). Phosphate or borate buffers characterized by an
appropriate ionic strength and pH are the most com-
monly used electrolytes for separating numerous wine
compounds, including vitamins (Coelho et al., 2016).
Capillary zone electrophoresis suffers from the low sen-

sitivity of the absorbance-based detectors that are tradi-
tionally used in association with it, an issue that can
be avoided through the use of laser-induced fluores-
cence detection, which is recognized to be highly sensi-
tive (Cataldi, Nardiello, De Benedetto, et al., 2002; Cataldi,
Nardiello, Scrano, et al., 2002). Accordingly, althoughwine
electrophoresis mostly relies on UV detection (Coelho
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et al., 2016) in the case of vitamins, which are present at
trace levels in wine, laser-induced fluorescence appears
to be a more powerful detector (Cataldi, Nardiello, De
Benedetto, et al., 2002; Cataldi, Nardiello, Scrano, et al.,
2002). In addition, some intrinsically fluorescent vitamins,
such as riboflavin, benefit from the technique, as they can
be detected directly in very low amounts in an alkaline
phosphate buffer (Cataldi, Nardiello, Scrano, et al., 2002).
The lack of sensitivity when using traditional detection
must also be overcome through concentration steps, or the
use of internal standards
Micellar electrokinetic capillary chromatography has

been used for the determination of total ascorbic acid in
beers, wines, and fruit drinks, and proved to present the
same order of precision as HPLC, while being faster and
less expensive to operate (Marshall et al., 1995).

Biosensors
Biosensors are analytical devices that are able to convert
biological responses into quantifiable and processable sig-
nals (Lowe, 1984), composed of bioreceptors that specifi-
cally bind to the analytes, an interface architecture, and a
transducer element. Upon transduction, the signal is con-
verted into an electronic signal, therefore becoming usable
for further processing (Grieshaber et al., 2008). Biosensors
have been proved efficient in the detection of wine-related
vitamins in several matrixes, including biotin (Kergaravat
et al., 2012; Martín-Yerga et al., 2017; Polese et al., 2014),
folic acid (Arvand &Dehsaraei, 2013; Boström Caselunghe
& Lindeberg, 2000; Jamali et al., 2014), inositol (Rajaram
et al., 2020; Yang et al., 2006), pyridoxine (Mostafa, 2003;
Vaze & Srivastava, 2008), riboflavin (Caelen et al., 2004;
Khaloo et al., 2016), and thiamine (Akyilmaz et al., 2006;
Halma et al., 2017), as well as the determination of ascor-
bic contents in several samples, including wine, relying on
the use of platinum and carbon paste electrodes (Pisoschi
et al., 2011). Methods relying on the use of biosensors
capable of the simultaneous detection of B- and C-group
vitamins have been established, although limited in num-
ber (Baghizadeh et al., 2015; Baś et al., 2011; Gao et al.,
2008; Nie et al., 2013, 2014; Revin & John, 2012). How-
ever, such techniques present interesting perspectives for
the future of vitamin content analysis in must and wine
samples.

Immunoassays
Immunoassays are based on the specific reaction exist-
ing between an antibody and its associated antigen. Such
assays have been shown to be highly specific, highly
sensitive, and simple, capable of detecting low contents
of residues in short time periods (Zhang et al., 2018).
Among immunoassays, enzyme-linked immunosorbent
assays (ELISA) appear to be the most widespread, pre-

senting the advantage of high sample throughput (Zhang
et al., 2018). Such methods have been developed for the
analysis of certain wine-related vitamins in several sam-
ples, such as biotin (Chang et al., 1994), folic acid (Hoeg-
ger et al., 2007; Iyer & Tomar, 2013), pantothenic acid (Ber-
telsen et al., 1988; Finglas et al., 1988; Gonthier, Boullanger,
et al., 1998; Gonthier, Fayol, et al., 1998; Morris et al., 1988),
and riboflavin (Ravi & Venkatesh, 2017; Zeng et al., 2018).
What is more, commercial ELISA tests appear unable to
detect certain thiamine forms that occur (Edwards et al.,
2017). Simultaneous detection of wine-related vitamins
using ELISA or electrochemiluminescence immunoassays
has not been reported (Chen et al., 2020).

7 PERSPECTIVES

Most of the studies focusing on vitamins in grape musts
and wines were lead in the past decades, and essentially
occurred between 1940 and 1970, and, to a lesser extent,
between 1980 and 2000. As such, both the age of those
investigations and the ancientness and imprecision of the
methods used then only provide for obsolete information
forming the current knowledge about vitamins in grape
products. However, the more sensitive analytical methods
that were developed in the recent years to investigate vita-
min contents in other foodmatrixes open up a broad range
of prospects in the wine science field and would allow for
refined, more precise, and accurate quantification of vita-
mins and their vitamers in grape musts and wines. This
would support a better comprehension of yeast require-
ments in vitamins in winemaking context, and as such,
finer modulations of the processes.
In addition, the involvement of vitamins in the devel-

opment of wine aromas remains mostly unexplored, and
offers ground for in-depth investigation, notably through
the metabolic connections existing between vitamins
and aromatic molecules. As such, pyridoxine and niacin
metabolisms have been proved to be directly linked to
butanoate metabolism, and therefore, to the subsequent
key wine aromatic compounds derived from it, such as
ethyl butanoate and ethyl 2-methylbutanoate, that have
been described as significant odorants of several wines
(Aznar et al., 2001; Chisholm et al., 1994; Ferreira et al.,
2000; Moio et al., 1995), both characterized by fruity and
sweet descriptors (Aznar et al., 2001; Berger et al., 1989;
Klesk & Qian, 2003; Schieberle et al., 1990), and there-
fore suggesting a positive effect on the product. Likewise,
niacin metabolism is linked to propanoate metabolism,
leading the suspicion that a link also exists with derived
ethyl-propanoate. The compound has been described as
responsible for the increase of fruitiness and complexity
when in high levels in wines (Renault et al., 2015), and
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could, similarly, evoke a positive effect of the vitamin on
wine aromas. However, such involvements remain only
assumptions as yet, and, as such, open the door to studies
investigating their extent.

8 CONCLUSION

Vitamins are important compounds in wine-related yeast
metabolism, intervening in several key reactions, and have
been proved to have major impacts on the winemaking
processes. However, most of the research investigating this
topic in ancient decades has resulted in imprecise knowl-
edge on vitamin contents in grape musts and wines, as
well as on their evolution during winemaking. Similarly,
precise quantification of wine yeast requirements in the
course of these processes has not yet been determined,
and the significance of vitamins in wine sensory properties
remains obscure. The broad diversity of techniques devel-
oped in recent years provides numerous perspectives for
investigating the effects that vitamins have on grape musts
and wine.
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